Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Среднеквадратичная флуктуация потенциала, обусловленная системой случайных точечных зарядов





Рассмотрим систему зарядов на бесконечной плоскости, координата каждого из которых является случайной функцией. Заряды будем считать малыми и находящимися в узлах со средним расстоянием между узлами . Плотность узлов значительно больше, чем средняя плотность зарядов . Вероятность заполнения одного узла α << 1 и равна .

Потенциал, который создает произвольный узел в некоторой точке A на расстоянии от него, будет равен:

(3.130)

где U i – потенциал, создаваемый заряженным узлом в точке A,

ρ – расстояние в плоскости от начала координат до заряда,

λ – расстояние от точки A, где ищется потенциал, до плоскости, где расположены заряды.

Средняя величина потенциала , создаваемого i -м узлом, по определению среднего,

. (3.131)

Для расчета среднеквадратичного отклонения запишем:

Тогда среднеквадратичное отклонение величины V i будет равно:

, (3.132)

учитывая, что α << 1.

Потенциал U, создаваемый всей совокупностью зарядов на плоскости в точке A с координатами (ρ, λ), будет равен:

, (3.133)

где N i – число узлов на расстоянии r i,

n i – число заполненных узлов на расстоянии r i.

Учитывая, что заполнение и расположение узлов является случайным, для величины среднеквадратичного отклонения потенциала в точке A с координатами (ρ, λ), обусловленного всеми зарядами, получаем, учитывая (3.133),

. (3.134)

Рассмотрим количество узлов N i в интервале (ρ, ρ+αρ) около точки A. Оно будет:

. (3.135)

Учитывая определение вероятности заполнения узла α и (3.134), из (3.135) получаем:

. (3.136)

В полученном выражении величина U i(ρ, λ) имеет смысл потенциала единичного точечного заряда. Таким образом, из (3.136) можно видеть, что величина среднеквадратичной флуктуации потенциала σ U, вызванной системой точечных зарядов, определяется только их плотностью и потенциалом одного такого заряда.







Date: 2015-05-05; view: 504; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию