Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Пересекающиеся плоскости





Третий, самый распространённый случай, когда две плоскости пересекаются по некоторой прямой :

Две плоскости пересекаются тогда и только тогда, когда их коэффициенты при переменных НЕ пропорциональны, то есть НЕ существует такого значения «лямбда», чтобы выполнялись равенства

Сразу отмечу важный факт: Если плоскости пересекаются, тосистема линейных уравнений задаёт уравнение прямой в пространстве. Но о пространственной прямой позже.

В качестве примера рассмотрим плоскости . Составим систему для соответствующих коэффициентов:

Из первых двух уравнений следует, что , но из третьего уравнения следует, что , значит, система несовместна, и плоскости пересекаются.

Проверку можно выполнить «по пижонски» одной строкой:

Параллельные плоскости мы уже разобрали, теперь поговорим о перпендикулярных плоскостях. Очевидно, что к любой плоскости можно провести бесконечно много перпендикулярных плоскостей, а для того, чтобы зафиксировать конкретную перпендикулярную плоскость, необходимо знать две точки:

Пример 12

Дана плоскость . Построить плоскость , перпендикулярную данной и проходящую через точки .

Решение: Начинаем анализировать условие. Что мы знаем о плоскости ? Известны две точки. Можно найти вектор , параллельный данной плоскости. Маловато. Было бы неплохо где-нибудь нарыть ещё один подходящий вектор. Так как плоскости должны быть перпендикулярны, то подойдёт нормальный вектор плоскости .

Проводить подобные рассуждения здОрово помогает схематический чертёж:

Для лучшего понимания задачи отложите вектор нормали от точки в плоскости .

Следует заметить, что две произвольные точки могут располагаться в пространстве как угодно, и перпендикулярная плоскость может быть развёрнута к нам совершенно другим ракурсом. Кстати, теперь чётко видно, почему одна точка не определит перпендикулярную плоскость – вокруг единственной точки будет «вращаться» бесконечно много перпендикулярных плоскостей. Так же нас не устроит и единственный вектор (без всяких точек). Вектор является свободным и «наштампует» нам бесконечно много перпендикулярных плоскостей (которые, к слову, все будут параллельны). В этой связи минимальную жёсткую конструкцию обеспечивают две точки.



Алгоритм разобран, решаем задачу:

1) Найдём вектор .

2) Из уравнения снимем вектор нормали: .

3) Уравнение плоскости составим по точке (можно было взять и ) и двум неколлинеарным векторам :

Ответ:

Проверка состоит из двух этапов:

1) Проверяем, действительно ли плоскости будут перпендикулярны. Если две плоскости перпендикулярны, то их векторы нормали будут ортогональны. Логично. Из полученного уравнения снимаем вектор нормали и рассчитываемскалярное произведение векторов:

Таким образом,

2) В уравнение плоскости подставляем координаты точек . Обе точки должны «подойти».

И первый, и второй пункт можно выполнить устно.

Перейдём к заключительной задаче урока:






Date: 2015-04-23; view: 1006; Нарушение авторских прав

mydocx.ru - 2015-2020 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию