Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Формула Бернулли
Определение. Повторные независимые испытания называются испытаниями Бернулли, если каждое испытание имеет только два исхода, и вероятности исходов остаются неизменными для всех испытаний. Обычно эти две вероятности обозначаются через и , исход с вероятностью называют «успехом» и обозначают символом 1, а второй – «неудачей» и обозначают символом 0. Очевидно, что и должны быть неотрицательными и должно выполняться равенство . (4.1.1) Пространство элементарных исходов каждого отдельного испытания состоит из двух исходов 1 и 0. Очевидно, пространство элементарных исходов испытаний Бернулли содержит последовательностей из символов 1 и 0. Так как испытания независимы, то вероятности перемножаются, т. е. вероятность любой конкретной последовательности есть произведение, полученное при замене символов 1 и 0 вероятности на и соответственно. Таким образом, вероятность исхода равна: . Но на практике нас, как правило, интересует не порядок появления успехов в последовательности испытаний Бернулли, а их общее число. Теорема. Вероятность того, что в испытаниях Бернулли число успехов равно , вычисляется по формуле , (4.1.2) где — вероятность «успеха», а — вероятность «неудачи». Доказательство. Событие «в испытаниях Бернулли число успехов равно и число неудач — » содержит столько элементарных исходов, сколько существует способов размещения символов на местах, т.е. . А так как вероятность конкретной последовательности, содержащей символов 1, равна , то в итоге получаем: . n Число успехов в испытаниях обозначают через , тогда . Очевидно, что есть случайная величина, а функция (4.1.2) является «распределением» этой случайной величины. Будем называть это распределение биномиальным. Слово биномиальное отражает тот факт, что (4.1.2) представляет собой m -й член биноминального разложения . Отсюда следует, что .
Пример 1. Стрелок попадает в мишень с вероятностью . Найти вероятность того, что в результате пяти независимых выстрелов стрелок попадает: a) ровно четыре раза; б) не менее трех раз. m Решение. Для решения данной задачи применим формулу (4.1.2), в которой: . а) Число успехов равно . Таким образом, искомая вероятность: . б) Обозначим — вероятность попадания не менее трех раз из пяти. . l
Пример 2. Сколько испытаний с вероятностью успеха нужно произвести, чтобы вероятность хотя бы одного успеха была не меньше 0,5? m Решение. Рассмотрим следующие события: — в схеме Бернулли наблюдался хотя бы один успех; — в схеме Бернулли не наблюдалось ни одного успеха. Для решения задачи используем формулу (4.1.2), согласно которой вероятность того, что успехов не будет (т.е. число успехов равно нулю), равна: . Используя свойство вероятности противоположного события, получаем, что вероятность того, что будет хотя бы один успех, равна: . Остается найти наименьшее целое , для которого выполнено неравенство: . Решим последнее неравенство. . Разделив последнее неравенство на , получим . Наименьшим целым числом , удовлетворяющим последнему неравенству, является . l
Пример 3. Что вероятнее выиграть у равносильного противника (ничейный исход партии исключен): а) три партии из четырех или пять из восьми; б) не менее трех партий из четырех или не менее пяти партий из восьми. m Решение. Так как противники равносильны и ничейный исход партии исключен, то вероятности выигрыша и проигрыша каждой партии одинаковы и . а) Вероятность выигрыша трех партий из четырех равна: , а вероятность выигрыша пяти партий из восьми равна: . Так как , то вероятнее выиграть три партии из четырех. б) Вероятность выигрыша не менее трех партий из четырех равна: а вероятность выигрыша не менее пяти партий из восьми равна: Так как , то вероятнее выиграть не менее пяти партий из восьми. l
Date: 2015-06-07; view: 611; Нарушение авторских прав |