Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Операции над векторами





 

Произведение вектора на скалярный множитель l определяется по формуле l = (lа1, lа2, lа3).

Для двух векторов , их сумма и разность определяются по правилам:

 

Геометрически сумма и разность векторов строится как на рисунке:

 

 

Если точка О - начало координат, а М - точка с координатами (x, y, z), то вектор называется радиусом-вектором точки М.

Вектор с началом в точке А(x1, y1, z1) и концом в точке В(x2, y2, z2) в координатном виде записывается так: = .

 

Примеры.

а) В треугольнике АВС сторона АВ точками М и N разделена на три равные части: Найти вектор , если . Если построить треугольник и указанные вектора, то из геометрических правил сложения и вычитания легко получаются равенства т.е. . Так как , то Та-ким образом,

б) Найти длину вектора = (10, 15, -30) и его направляющие косинусы.

По формулам (4.1) и (4.2) определяем

 

3) Найти вектор , если А(2, 1, 0) и В(3, 0, 5).

 

Из формулы для координат вектора имеем = (3-2, 0-1, 5-0) =

= (1, -1, 5).

 






Date: 2015-12-10; view: 131; Нарушение авторских прав

mydocx.ru - 2015-2020 year. (0.009 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию