Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания
В подавляющем большинстве случаев на практике системы массового обслуживания являются многоканальными, и, следовательно, модели с n обслуживающими каналами (где n > 1) представляют несомненный интерес. Процесс массового обслуживания, описываемый данной моделью, характеризуется интенсивностью входного потока , при этом параллельно может обслуживаться не более n клиентов (заявок). Средняя продолжительность обслуживания одной заявки равняется . Входной и выходной потоки являются пуассоновскими. Режим функционирования того или иного обслуживающего канала не влияет на режим функционирования других обслуживающих каналов системы, причем длительность процедуры обслуживания каждым из каналов является случайной величиной, подчиненной экспоненциальному закону распределения. Конечная цель использования n параллельно включенных обслуживающих каналов заключается в повышении (по сравнению с одноканальной системой) скорости обслуживания требований за счет обслуживания одновременно n клиентов. Граф состояний многоканальной системы массового обслуживания с отказами имеет вид, показанный на рис. 1.3. Рис. 1.3. Граф состояний многоканальной СМО с отказами Состояния СМО имеют следующую интерпретацию: S 0 - все каналы свободны; S 1 - занят один канал, остальные свободны; ……………………………………………………. Sk - заняты ровно k каналов, остальные свободны; ……………………………………………………. Sn - заняты все n каналов, остальные свободны; Уравнения Колмогорова для вероятностей состояний системы P 0 ,..., Pk,... Pn будет иметь следующий вид: (1.26)
Начальные условия решения системы таковы: P 0(0) = 1, P 1(0) = P 2(0) =... = Pk (0) =... = P 1(0) = 0. Стационарное решение системы имеет вид: (1.27) где . Формулы для вычисления вероятностей Pk называются формулами Эрланга. Определим вероятностные характеристики функционирования многоканальной СМО с отказами в стационарном режиме: вероятность отказа: , (1.28) так как заявка получает отказ, если приходит в момент, когда все n каналов заняты. Величина Pотк характеризует полноту обслуживания входящего потока; вероятность того, что заявка будет принята к обслуживанию (она же - относительная пропускная способность системы q) дополняет Pотк до единицы: (1.29) абсолютная пропускная способность (1.30) среднее число каналов, занятых обслуживанием () следующее: (1.31) Величина характеризует степень загрузки СМО. Пример 1.4. Пусть n -канальная СМО представляет собой вычислительный центр (ВЦ) с тремя (n = 3) взаимозаменяемыми ПЭВМ для решения поступающих задач. Поток задач, поступающих на ВЦ, имеет интенсивность = 1 задаче в час. Средняя продолжительность обслуживания = 1,8 час. Поток заявок на решение задач и поток обслуживания этих заявок являются простейшими. Требуется вычислить финальные значения: вероятности состояний ВЦ; вероятности отказа в обслуживании заявки; относительной пропускной способности ВЦ; абсолютной пропускной способности ВЦ; среднего числа занятых ПЭВМ на ВЦ. Определите, сколько дополнительно надо приобрести ПЭВМ, чтобы увеличить пропускную способность ВЦ в 2 раза. Date: 2015-10-21; view: 489; Нарушение авторских прав |