Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Пример 1. На угольник ( ), конец которого жестко заделан, в точке опирается стержень (рис





На угольник (), конец которого жестко заделан, в точке опирается стержень (рис. 1.10, а). Стержень имеет в точке неподвижную шарнирную опору и к нему приложена сила , а к угольнику – равномерно распределенная на участке нагрузка интенсивности и пара с моментом .

Дано: кН, , , м.

Определить: реакции в точках , , .

Решение:

1. Для определения реакций расчленим систему и рассмотрим сначала равновесие стержня (рис. 1.10, б). Проведем координатные оси и изобразим действующие на стержень силы: силу , реакцию , направленную перпендикулярно стержню, и составляющие и реакции шарнира . Для полученной плоской системы сил составляем три уравнения равновесия:

 

Рис. 1.10

 

(1)

(2)

(3)

2. Рассмотрим равновесие угольника (рис. 1.10, в). На него действуют сила давления стержня , направленная противоположно реакции , равномерно распределенная нагрузка, которую заменяем силой , приложенной в середине участка ( кН), пара сил с моментом и реакция жесткой заделки, слагающаяся из силы, которую представим составляющими и , и моментом . Для этой плоской системы сил составляем уравнения равновесия:

(4)

(5)

. (6)

При вычислении момента силы разлагаем ее на составляющие и и применяем теорему Вариньона. Подставив в составленные уравнения числовые значения заданных величин и решив систему уравнений (1)–(6), найдем искомые реакции. При решении учитываем, что численно в силу равенства действия и противодействия.

Ответ: кН, кН, кН, кН, кН, . Знаки минус указывают, что силы , и момент направлены противоположно показанным на рисунках.








Date: 2015-09-24; view: 556; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию