Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Если дисконтирование производится по сложной ставке, то критическую ставку найдем из равенства
$(1 + 4,)""'-s2(u/bP. В итоге /о=я-яе-1. (4.32) Консолидирование (объединение) задолженности. Как уже было сказано выше, принцип финансовой эквивалентности платежей применяется при различных изменениях условий выплат денежных сумм: их объединении, изменении сроков (досрочном погашении задолженности или, наоборот, пролонгировании срока) и т.п. Общий метод решения подобного рода задач заключается в разработке так называемого уравнения эквивалентности (equation of value), в котором сумма заменяемых платежей, приведенных к какому-либо моменту времени, приравнивается к сумме платежей по новому обязательству, приведенных к той же дате. Для краткосрочных обязательств приведение осуществляется обычно на основе простых ставок, для средне-и долгосрочных — с помощью сложных процентных ставок. Заметим, что в простых случаях часто можно обойтись без разработки и решения уравнения эквивалентности. Одним из распространенных случаев изменения условий контрактов является консолидация (объединение) платежей. Пусть платежи Sv £2,..., Sm со сроками л,, я2,—, пт заменяются одним в сумме S0 и сроком л0. В этом случае возможны две постановки задачи: если задается срок л0, то находится сумма S0 и наоборот, если задана сумма консолидированного платежа S0, то определяется срок л0. Рассмотрим обе постановки задачи. Определение размера консолидированного платежа. При решении этой задачи уравнение эквивалентности имеет простой вид. В общем случае, когда л,<л2<...<лт, искомую величину находим как сумму наращенных и дисконтированных платежей. Так, при применении простых процентных ставок получим S0 = XSj(\ + tjl) + 2^(1 + tki)~\ (4.33) j *• где Sj — размеры объединяемых платежей со сроками лу. < л0, Sk — размеры платежей со сроками пк > л0, /у= До-Лу, tk = пк- п0. ПРИМЕР 4.10. Два платежа 1 и 0,5 млн руб. со сроками уплаты соответственно 150 и 180 дней объединяются в один со сроком 200 дней. Пусть стороны согласились на применении при конверсии простой ставки, равной 20%. Консолидированная сумма долга составит
S0 = 1000(1 + = 1532,87 тыс. руб. Консолидацию платежей можно осуществить и на основе сложных процентных ставок. Вместо (4.33) для общего случая (л, < п0 < пт) получим So-2sj(l*if*2Ml + l)~k- (4-34) ПРИМЕР 4.11. Платежи в 1 и 2 млн руб. и сроками уплаты через 2 и 3 года объединяются в один со сроком 2,5 года. При консолидации используется сложная ставка 20%. Искомая сумма составит S0 = 1000 х 1,20-5 + 2000 х 1,2-°-5 = 2921,187 тыс. руб. Определение срока консолидированного платежа. Если при объединении платежей задана величина консолидированного платежа S0, то возникает проблема определения его срока л0. В этом случае уравнение эквивалентности удобно представить в виде равенства современных стоимостей соответствующих платежей. При применении простой ставки это равенство имеет вид SoO+vr1 =25у(1+Лу#г!, откуда * я0 = - h=----------- -------------- 1. (4.35) Очевидно, что решение может быть получено при условии, что S0 > 2^.(1 + /ly/)"1, иначе говоря, размер заменяющего платежа не может быть меньше суммы современных стоимостей заменяемых платежей. Заметим также, что искомый срок пропорционален величине консолидированного платежа. ПРИМЕР 4.12. Суммы в размере 10, 20 и 15 млн руб. должны быть выплачены через 50, 80 и 150 дней соответственно. Стороны согласились заменить их одним платежом. Современная стоимость заменяемых платежей (обозначим эту величину через Р) при условии, что / = 10% и К = 365, составит Р = Ю(1 + Л- 0,1)"1 + 20(1 + -Ц- 0,1)"1 + 15(1 + ~|| 0,1)-' = 43,844 млн руб. Согласно (4.35) находим п0 = ~qV Продолжим пример. Пусть теперь размер заменяющего платежа задан в сумме 45 млн руб. Тогда срок заметно сократится и станет равным 0,264 года, или 96 дням. Перейдем к определению срока консолидированного платежа на основе сложных процентных ставок. Уравнение эквивалентности запишем следующим образом *(|+'П-2 */(!♦')'■'• Date: 2015-09-19; view: 482; Нарушение авторских прав |