![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Сходимость в топологических пространствах
Определение. Последовательность точек {xn} топологического пространства Х называется сходящейся к точке x0ÎX, если любая окрестность x0 содержит все точки последовательности, за исключением, быть может, их конечного числа. При этом саму точку x0 называют пределом последовательности и обозначают
Комментарий. В обычной топологии, то есть в метрических пространствах, на прямой пределом последовательности Рассмотрим прямую с топологией Зарисского. В этой топологии любая точка Обычная и дискретная топологии удовлетворяют аксиомам А1 и А2. Однако дискретная топология не очень похожа на обычную. В дискретной топологии открытым является любое множество, то есть, в частности, любая точка x является сама своей окрестностью В произвольном метрическом пространстве точка х0 тогда и только тогда принадлежит замыканию некоторого множества, когда в этом множестве существует последовательность, сходящаяся к х0. В топологическом пространстве справедливо утверждение: Если последовательность точек множества А топологического пространства (Х,t) сходится к некоторой точке x0ÎX, то Обратное, вообще говоря, не верно. Пример 1. Пусть
Date: 2015-09-03; view: 534; Нарушение авторских прав |