![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Топологические пространства и топологии
Комментарий. Функция Для числовых функций эти определения эквивалентны, поскольку, с одной стороны, множество точек Можно ли дать определение непрерывности для отображения, которое определяется уже не для чисел, а для произвольных носителей, то есть для элементов произвольных множеств? Нет, потому, что неясно, что понимать под окрестностью точки на произвольных носителях.Надо предварительно ввести понятие окрестности точки на произвольном множестве, а потом понятие Множество, на котором корректно введено понятие Для корректного определения понятия окрестности точки в произвольном множестве вспомним, что множество называется открытым, если для любой его точки достаточно малый шар с центром в этой точке (то есть Ранее было показано, что в метрических пространствах для открытых множеств выполняются два свойства: объединение любого (даже бесконечного) набора открытых множеств есть открытое множество и пересечение конечного числа открытых множеств есть открытое множество. Приняв их за аксиомы, получим топологию в аксиоматике Александрова. В силу принципа двойственности топологию можно также задать, описав множество всех замкнутых множеств (т.е. всех дополнений к открытым множествам). Определение 1. Рассмотрим произвольное множество X – носитель топологического пространства. Множество - Все X и пустое множество - Объединение конечного или бесконечного семейства множеств - Пересечение конечного числа множеств Определение 2. Носитель топологического пространства – множество X вместе с заданной на нем топологией Комментарий. Поопределению,все подмножества X, принадлежащие Date: 2015-09-03; view: 423; Нарушение авторских прав |