Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Непрерывные отображения
Комментарий. Понятие топологии является минимально необходимым для того, чтобы говорить о непрерывных отображениях. Интуитивно непрерывность есть отсутствие разрывов, то есть близкие точки при непрерывном отображении должны переходить в близкие. Оказывается, для определения понятия близости точек можно обойтись без понятия расстояния. Именно это и есть топологическое определение непрерывного отображения. Определение 1. Точкой топологического пространства называют любой его элемент. Определение 2. Окрестностью точки в топологическом пространстве называется любое открытое множество, содержащее указанную точку. Определение 3. Для любого топологического пространства множество называется открытым если каждая точка имеет окрестность . Пусть задано отображение и . Определение 4. Множество , где называется образом множества А при отображении . Определение 5. Для отображения множество называется прообразом множества В при отображении . Отображение сюръективно, если , инъективно, если и биективно, если оно сюръективно и инъективно. Комментарий. Следует различать прообраз , определяемый для любого отображения и обратное отображение , существующее только для биективных отображений. Пусть задано отображение , где - топологические пространства с топологиями соответственно и . В соответствии с определением окрестности точки в топологическом пространстве, теперь можно дать определение непрерывности отображения в точке. Определение 6. Отображение называется непрерывным в точке , если точки , такая, что из того, что точка , следует, что . То есть .
Определение 7. Отображение, непрерывное в каждой точке x множества X, называется непрерывным на X. Если множество X фиксировано, отображения называют просто непрерывными, не указывая X. Примеры. 1. Для произвольных метрических пространств Х и Y постоянное отображение является непрерывным. 2. Тождественное отображение топологического пространства самого на себя является непрерывным. 3. Непрерывную функцию можно рассматривать как непрерывное отображение из топологического пространства R1 в топологическое пространство R1. Теорема 1. (Критерий непрерывности отображения): Отображение непрерывно если и только если для любого открытого множества пространства Y его прообраз принадлежит , то есть является открытым множеством топологического пространства X. Необходимость. Пусть отображение непрерывно. Покажем, чтодля любого открытого множества пространства Y его прообраз принадлежит , то есть является открытым множеством топологического пространства X. Выберем открытое множество . U - окрестность каждой своей точки y = F (x), . Тогда каждое имеет такую окрестность, что . Так как, по определению, V есть множество всех точек , таких, что , то . Так как каждое x принадлежит своему , то объединение всех содержит все x. Это значит, что . С другой стороны, все содержатся в V, то есть и их объединение содержится в V, то есть . Из двух включений и следует равенство Таким образом, V есть объединение открытых множеств , то есть оно само открыто по аксиоме топологии. Достаточность. Теперь пусть для любого открытого множества U топологического пространства Y (то есть ) множество открыто в X (то есть принадлежит ). Покажем, что отображение непрерывно.Выберем произвольную окрестность точки F(x) в Y. Это открытое множество, и поэтому открыто в X по условию. При этом по построению . Итак, для любой окрестности точки F (x) существует окрестность точки x, такая, что содержится в , то есть выполнено определение непрерывности. Комментарий. Итак, при непрерывном отображении прообраз открытого отображения открыт, а замкнутого замкнут. Для образов при непрерывных отображениях такого рода утверждения, вообще говоря, не имеют место. Примеры. Непрерывное отображение f: R1®R1, где f(x)=arctgx, отображает бесконечный интервал R=(-¥, +¥) в интервал , т.е. открытое и замкнутое множество – в открытое, но не замкнутое множество. Непрерывное отображение f: R1®R1, где отображает открытое и замкнутое множество R=(-¥, +¥) в полуинтервал (0; 1], который не является ни открытым, ни замкнутым множеством. Определение 8. Непрерывное отображение f: X®Y топологического пространства Х в топологическое пространство Y называется открытым, если при этом отображении образ открытого множества открыт. Определение 9. Непрерывное отображение f: X®Y топологического пространства Х в топологическое пространство Y называется замкнутым, если при этом отображении образ замкнутого множества замкнут. Пример. Тождественное отображение есть пример одновременно открытого и замкнутого отображения. Комментарий. Эта теорема позволяет строить новые топологии. Пусть задан некоторый класс отображений из множества X в числовую прямую R с обычной топологией или в любое другое топологическое пространство. Зададим набор подмножеств в X, включив туда множества вида для всех открытых множеств U в R и для всех отображений F все их объединения и конечные пересечения, а также всё X и пустое множество. Полученный набор будет топологией. Определение 10. Взаимно - однозначные и взаимно - непрерывные отображение из топологического пространства X в топологическое пространство Y называются гомеоморфизмами. Определение 11. Если существует гомеоморфизм , то говорят, что X и Y гомеоморфны друг другу. Комментарий. В этом случае мы можем наложить X на Y без самопересечений и разрывов, приклеивая к . Так что получается, что X и Y устроены одинаково. Понятие гомеоморфизма являются центральным для многих разделов топологии, в которых изучаются характеристики, описывающие гомеоморфные, то есть одинаково устроенные пространства, и поэтому их можно считать разными экземплярами одного и того же объекта. Date: 2015-09-03; view: 1399; Нарушение авторских прав |