Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Вращательное движение твердого тела вокруг оси. Угловая скорость и угловое ускорение





Для кинематического описания вращательного движения абсолютно твердого тела вокруг неподвижной оси используются те же величины, что и для описания движения материальной точки по окружности.

Вращательным движением твердого тела вокруг неподвижной оси называется такое его движение, при котором какие-нибудь две точки, принадлежащие телу (или неизменно с ним связанные), остаются во все время движения неподвижными (рис.9).

Промежуток времени, в течение которого тело совершает один полный оборот вокруг оси, — период вращения. Величина, обратная периоду, — частота вращения.

Проходящая через неподвижные точки А и В прямая АВ называется осью вращения.

Так как расстояния между точками твердого тела должны оста­ваться неизменными, то очевидно, что при вращательном движении все точки, принадлежащие оси вращения, будут неподвижны, а все остальные точки тела будут описывать окружности, плоскости которых перпендикулярны оси вращения, а центры лежат на этой оси.

Для определения положения вращаю­щегося тела проведем через ось вращения, вдоль которой направим ось Az, полуплос­кость - неподвижную и полуплоскость, врезанную в само тело и вращающую­ся вместе с ним (рис. 9).

Рис.9

Тогда поло­жение тела в любой момент времени одно­значно определится взятым с соответствую­щим знаком углом φ между этими полуплоскостями, который назо­вем углом поворота тела. Будем считать угол φ положительным, если он отложен от неподвижной плоскости в направлении против хода часовой стрелки (для наблюдателя, смотрящего с положительного конца оси Az), и отрицательным, если по ходу часовой стрелки. Измерять угол φ будем всегда в радианах. Чтобы знать положение тела в любой момент времени, надо знать зависимость угла φ от времени t, т.е.

φ=f(t).

Уравнение выражает закон вращательного движения твердого тела вокруг неподвижной оси.

При вращательном движении абсолютно твердого тела вокруг неподвижной оси углы поворота радиуса-вектора различных точек тела одинаковы.

Основными кинематическими характеристиками вращательного движения твердого тела являются его угловая скорость ω и угловое ускорение ε.

Если за промежуток времени ∆t=t1-t тело совершает поворот на угол ∆φ=φ1-φ, то численно средней угловой скоростью тела за этот промежуток времени будет . В пределе при ∆t→0 найдем, что

или ω= .

Таким образом, числовое значение угловой скорости тела в данный момент времени равно первой производной от угла поворота по времени. Знак ω определяет направление вращения тела. Легко видеть, что когда вращение происходит против хода часовой стрелки, ω>0, а когда по ходу часовой стрелки, то ω<0.

Размерность угловой скорости 1/Т (т.е. 1/время); в качестве единицы измерения обычно применяют рад/с или, что тоже, 1/с (с-1), так как радиан - величина безразмер­ная.

Угловую скорость тела можно изобразить в виде вектора , модуль которого равен | | и который направлен вдоль оси вращения тела в ту сторону, откуда вращение видно происходящим против хода часовой стрелки (рис.10). Такой вектор определяет сразу и модуль угло­вой скорости, и ось вращения, и направ­ление вращения вокруг этой оси.

Рис.10

 

Угол поворота и угловая скорость характеризуют движение всего абсолютно твердого тела в целом. Линейная скорость какой-либо точки абсолютно твердого тела пропорциональна расстоянию точки от оси вращения:

При равномерном вращении абсолютно твердого тела углы поворота тела за любые равные промежутки времени одинаковы, тангенциальные ускорения у различных точек тела отсутствуют, а нормальное ускорение точки тела зависит от ее расстояния до оси вращения:

Вектор направлен по радиусу траектории точки к оси вращения.

Угловое ускорение характеризует изменение с те­чением времени угловой скорости тела. Если за промежуток вре­мени ∆t=t1-t угловая скорость тела изменяется на величину ∆ω=ω1-ω, то числовое значение среднего углового ускорения тела за этот промежуток времени будет . В пределе при ∆t→0 найдем,

Таким образом, числовое значение углового ускорения, тела в данный момент времени равно первой производной от угловой скорости или второй производной от угла поворота тела по времени.

Размерность углового ускорения 1/T2 (1/время2); в качестве единицы измерения обычно применяется рад/с2 или, что то же, 1/с2 (с-2).


Если модуль угловой скорости со временем возрастает, вращение тела называется ускоренным, а если убывает, - замедленным. Легко видеть, что вращение будет ускоренным, когда величины ω и ε имеют одинаковые знаки, и замедленным, - когда разные.

Угловое ускорение тела (по аналогии с угловой скоростью) можно также изобразить в виде вектора ε, направленного вдоль оси вращения. При этом

Направление ε совпадает с направлением ω, когда тело вращается ускоренно и (рис.10,а), противоположно ω при замедленном вращении (рис.10,б).

 







Date: 2015-09-03; view: 524; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию