Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Движение тела по окружности с постоянной по модулю скоростью
Движение тела по окружности с постоянной по модулю скоростью - это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги. Положение тела на окружности определяется радиусом-вектором , проведенным из центра окружности. Модуль радиуса-вектора равен радиусу окружности R (рис. 6). Рис.6
За время ∆t тело, двигаясь из точки А в точку В, совершает перемещение , равное хорде АВ, и проходит путь, равный длине дуги l. Радиус-вектор поворачивается на угол ∆φ. Угол выражают в радианах. Скорость движения тела по траектории (окружности) направлена по касательной к траектории. Она называется линейной скоростью. Модуль линейной скорости равен отношению длины дуги окружности l к промежутку времени ∆t, за который эта дуга пройдена: Скалярная физическая величина, численно равная отношению угла поворота радиуса-вектора к промежутку времени, за который этот поворот произошел, называется угловой скоростью: В СИ единицей угловой скорости является радиан в секунду . При равномерном движении по окружности угловая скорость и модуль линейной скорости — величины постоянные: ω=const; v=const. Положение тела можно определить, если известен модуль радиуса- вектора и угол φ, который он составляет с осью Ох (угловая координата). Если в начальный момент времени t0=0 угловая координата равна φ0, а в момент времени t она равна φ, то угол поворота ∆φ радиуса-вектора за время ∆t=t-t0 равен ∆φ=φ-φ0. Тогда из последней формулы можно получить кинематическое уравнение движения материальной точки по окружности: φ=φ0+ωt Оно позволяет определить положение тела в любой момент времени t. Учитывая, что , получаем: — формула связи между линейнойи угловой скоростью. Промежуток времени Т, в течение которого тело совершает один полный оборот, называется периодом вращения: где N – число оборотов, совершенных телом за время Δt. За время ∆t=Т тело проходит путь l =2πR. Следовательно, Величина ϑ, обратная периоду, показывающая, сколько оборотов совершает тело за единицу времени, называется частотой вращения: Следовательно, .
Ускорение при движении тела по окружности с постоянной по модулю скоростью (центростремительное ускорение) При равномерном вращении по окружности модуль скорости движения тела не изменяется, но направление скорости изменяется непрерывно. Следовательно, данное движение - движение с ускорением. Оно характеризует быстроту изменения скорости по направлению. Рис.7
По определению среднего ускорения . Треугольники ОАВ и ВСD — равнобедренные (рис. 7). Углы при вершинах — одинаковые (как углы с соответственно перпендикулярными сторонами). Отсюда следует, что ∆ОАВ подобен ΔВСD. Из подобия Тогда Мгновенное ускорение β — угол между и —внешний по отношению к ΔВСD: При ∆t→0 угол ∆φ→0 и, следовательно, β→90°. Перпендикуляром к касательной к окружности является радиус. Следовательно, направлено по радиусу к центру и поэтому называется центростремительным ускорением: Модуль , направление непрерывно изменяется (рис. 8). Поэтому данное движение не является равноускоренным. Рис.8
Date: 2015-09-03; view: 1056; Нарушение авторских прав |