Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Простейшие свойства





1. Векторное пространство является абелевой группой по сложению.

2. Нейтральный элемент является единственным, что вытекает из групповых свойств.

3. для любого .

4. Для любого противоположный элемент является единственным, что вытекает из групповых свойств.

5. для любого .

6. для любых и .

7. для любого .

22. Переход к новому базису. Пусть в пространстве имеется два базиса: и .

Первый условимся называть старым базисом, второй – новым. Каждый из векторов нового базиса, по Теореме 5.1, можно линейно выразить через векторы старого базиса:

(5.1)

Новые базисные векторы получаются из старых с помощью матрицы

При этом коэффициенты их разложений по старым базисным векторам образуют столбцы этой матрицы. Матрица называется матрицей перехода от базиса к базису .

Определитель матрицы не равен нулю, так как в противном случае ее столбцы, а следовательно и векторы , были бы линейно зависимы.

Обратно, если , то столбцы матрицы линейно независимы, и следовательно векторы , получающиеся из базисных векторов с помощью матрицы , линейно независимы и значит образуют некоторый базис. Таким образом, матрицей перехода может служить любая квадратная матрица порядка n с отличным от нуля определителем.







Date: 2015-08-24; view: 375; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию