Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Теорема об изменении количества движения точки. Количеством движения точки называется вектор, равный произведению массы точки на её скорость - (рис





Количеством движения точки называется вектор, равный произведению массы точки на её скорость - (рис. 12).

 

 

Запишем основное уравнение динамики: , или . Внеся массу под знак дифференциала (m = const), получим теорему об изменении количества движения точки в дифференциальной форме: - производная по времени от количества движения точки равна сумме сил, действующих на нее. Разделяя переменные и интегрируя, имеем . Поменяв местами действия суммирования и интегрирования в правой части уравнения, взяв интеграл в левой части уравнения и обозначив: ,получим теорему об изменении количества движения точки в интегральной форме:

 

(26)

Вектор называется импульсом силы. если = const, то .

изменение количества движения точки за некоторый промежуток времени равно сумме импульсов сил, действующих на неё за тот же промежуток времени.

теорема об изменении количества движения точки векторная, ее можно записать в проекциях на оси координат:

;

;

.

 







Date: 2015-08-15; view: 386; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию