Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Вынужденные колебания точки





Рассмотрим движение точки (рис. 9) под действием восстанавливающей и некоторой периодической силы: F = F 0∙ sin(ωt), сопротивление среды не учитываем.

 

 

Колебания точки под действием этих сил называются вынужденными. Уравнение движения точки в этом случае имеет вид:

Разделив на массу и обозначив , получим уравнение вынужденных колебаний точки без учета сопротивления среды:

(23)

Уравнение (23) является неоднородным. Его общее решение x = x 1 + x 2, где: - общее решение соответствующего однородного уравнения; x 2 – частное решение уравнения (23). Частное решение ищем в виде Подставив это решение в уравнение (23), найдем А амплитуду вынужденных колебаний:

 

.

Общее решение уравнения (23):

. (24)

 

Постоянные интегрирования С 1 и С 2 можно найти из начальных условий:

при . Коэффициент - называется коэффициентом динамичности (рис. 10) и показывает, во сколько раз амплитуда

 

вынужденных колебаний больше статического смещения точки под действием силы F 0.

 







Date: 2015-08-15; view: 338; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию