Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Свободные колебания
Свободными называются колебания точки, происходящие под действием только восстанавливающей силы. Сила называется восстанавливающей, если она все время стремится вернуть точку в положение равновесия. Примером восстанавливающей силы является сила упругости пружины. Если восстанавливающая сила пропорциональна смещению точки из положения равновесия, то она называется линейной восстанавливающей силой. Пусть на точку М массой m действует линейная восстанавливающая сила упругости (рис. 2): Fупр = сΔ, где с – жесткость пружины (физический смысл жесткости - это сила, необходимая для деформации пружины на единицу длины), в Н/м; Δ – деформация пружины, м.
На рис. 2 l0 – длина недеформированной пружины. Выбрав начало координат в положении равновесия – т. О, запишем основное уравнение динамики в проекции на ось x: , или . Отсюда получим (4) Выражение (4) – это и есть уравнение свободных колебаний точки. Здесь называется круговой частотой колебаний (физический смысл: число колебаний за 2π секунд), с-1. Общее решение дифференциального уравнения (4) имеет вид: . (5) Взяв производную по времени, имеем . (6) Постоянные интегрирования С 1 и С 2 найдем из начальных условий: при . (7) Подставив (7) в (5) и (6), находим . С учетом этого решение (5) принимает вид: . (8) Решение (8) можно записать в виде: , (9) где - амплитуда колебаний, м; - начальная фаза колебаний, рад. Из (9) видно, что свободные колебания являются гармоническими. Период колебаний можно найти по формуле: . (10) Date: 2015-08-15; view: 678; Нарушение авторских прав |