Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Необходимо запомнить: наличие корреляций не является показателем выраженности и направленности причинно-следственных отношений





Другими словами, установив корреляцию переменных, мы можем судить не о детерминантах и производных, а лишь о том, насколько тесно взаимосвязаны изменения переменных и каким образом одна из них реагирует на динамику другой.

При использовании данного метода оперируют той или иной разновидностью коэффициента корреляции. Его числовое значение обычно изменяется от -1 (обратная зависимость переменных) до +1 (прямая зависимость). При этом нулевое значение коэффициента соответствует полному отсутствию взаимосвязи динамики переменных.

Например, коэффициент корреляции +0,80 отражает наличие более выраженной зависимости между переменными, чем коэффициент +0,25. Аналогично, зависимость между переменными, характеризуемая коэффициентом -0,95, гораздо теснее, чем та, где коэффициенты имеют значения +0,80 или + 0,25 («минус» указывает нам только на то, что рост одной переменной сопровождается уменьшением другой).

В практике психологических исследований показатели коэффициентов корреляции обычно не достигают +1 или -1. Речь может идти только о той или иной степени приближения к данному значению. Часто корреляция считается выраженной, если ее коэффициент выше ±0,60. При этом недостаточной корреляцией, как правило, считаются показатели, располагающиеся в интервале от -0,30 до +0,30.

Однако, сразу следует оговорить, что интерпретация наличия корреляции всегда предполагает определение критических значений соответствующего коэффициента. Рассмотрим этот момент более подробно.

Вполне может получиться так, что коэффициент корреляции равный +0,50 в некоторых случаях не будет признан достоверным, а коэффициент, составляющий +0,30, окажется при определенных условиях характеристикой несомненной корреляции. Многое здесь зависит от протяженности рядов переменных (т. е. от количества сопоставляемых показателей), а также от заданной величины уровня значимости (или от принятой за приемлемую вероятность ошибки в расчетах).

Ведь, с одной стороны, чем больше выборка, тем количественно меньший коэффициент будет считаться достоверным свидетельством корреляционных отношений. А с другой стороны, если мы готовы смириться со значительной вероятностью ошибки, то можем посчитать за достаточную небольшую величину коэффициента корреляции.

Существуют стандартные таблицы с критическими значениями коэффициентов корреляции. Если полученный нами коэффициент окажется ниже, чем указанный в таблице для данной выборки при установленном уровне значимости, то он считается статистически недостоверным.

Работая с такой таблицей, следует знать, что пороговой величиной уровня значимости в психологических исследованиях обычно считается 0,05(или пять процентов). Разумеется, риск ошибиться будет еще меньше, если эта вероятность составляет 1 на 100 или, еще лучше, 1 на 1000.

Итак, не сама по себе величина подсчитанного коэффициента корреляции служит основанием для оценки качества связи переменных, а статистическое решение о том, можно ли считать вычисленный показатель коэффициента достоверным.

Зная это, обратимся к изучению конкретных способов определения коэффициентов корреляции.

Значительный вклад в разработку статистического аппарата корреляционных исследований внес английский математик и биолог Карл Пирсон (1857-1936), занимавшийся в свое время проверкой эволюционной теории Ч. Дарвина.

Обозначение коэффициента корреляции Пирсона (r) происходит от понятия регрессии - операции по сведению множества частных зависимостей между отдельными значениями переменных к их непрерывной (линейной) усредненной зависимости.

Формула для расчета коэффициента Пирсона имеет такой вид:

 

,

 

где x, y - частные значения переменных, S - (сигма) - обозначение суммы, а - средние значения тех же самых переменных. Рассмотрим порядок использования таблицы критических значений коэффициентов Пирсона. Как мы видим, в левой ее графе указано число степеней свободы. Определяя нужную нам строчку, мы исходим из того, что искомая степень свободы равна n -2, где n - количество данных в каждом из коррелируемых рядов. В графах же, расположенных с правой стороны, указаны конкретные значения модулей коэффициентов.

 

Число степеней «свободы» (n -2) Уровни значимости
0, 05 0, 02 0, 01 0,001
  0,99692 0, 99951 0, 99988 0, 9999988
  0,9500 0, 9800 0, 9900 0, 9990
  0,878 0, 9343 0, 9587 0,9911
  0,811 0, 882 0, 9172 0, 9741
  0,754 0, 833 0, 875 0,9509
  0,707 0, 789 0, 834 0, 9249
  0,666 0, 750 0, 798 0, 898
  0,632 0, 715 0, 765 0, 872
  0,602 0, 685 0, 735 0,847
  0,576 0, 658 0, 708 0, 823
  0,553 0, 634 0, 684 0, 801
  0,532 0, 612 0, 661 0, 780
  0,514 0, 592 0, 641 0, 760
  0,497 0, 574 0, 623 0, 742
  0,482 0, 558 0, 606 0, 725
  0,468 0, 543 0, 590 0, 708
  0,456 0, 529 0, 575 0, 693
  0,444 0, 5) 6 0, 561 0, 679
  0,433 0, 503 0, 549 0, 665
  0,423 0, 492 0, 537 0, 652
  0,381 0, 445 0, 487 0, 597
  0,349 0, 409 0, 449 0, 554
  0,325 0, 381 0, 418 0,519
  0,304 0, 358 0, 393 0, 490
  0,288 0, 338 0, 372 0, 465
  0,273 0, 322 0, 354 0, 443
  0,250 0, 295 0, 325 0, 408
  0,232 0, 274 0, 302 0, 380
  0,217 0, 257 0, 283 0, 357
  0,205 0, 242 0, 267 0, 338
  0,195 0, 230 0, 254 0, 321

 


Причем, чем правее расположен столбик чисел, тем выше достоверность корреляции, увереннее статистическое решение о её значимости.

Если у нас, например, коррелируют два ряда цифр по 10 единиц в каждом из них и получен по формуле Пирсона коэффициент, равный +0,65, то он будет считаться значимым на уровне 0,05 (так как больше критического значения в 0,632 для вероятности 0,05 и меньше критического значения 0,715 для вероятности 0,02). Такой уровень значимости свидетельствует о существенной вероятности повторения данной корреляции в аналогичных исследованиях.

Теперь приведем пример вычисления коэффициента корреляции Пирсона. Пусть в нашем случае необходимо определить характер связи между выполнением одними и теми же лицами двух тестов. Данные по первому из них обозначены как x, а по второму - как y.

Для упрощения расчетов введены некоторые тождества. А именно:

При этом мы имеем следующие результаты испытуемых (в тестовых баллах):

 

Испытуемые x y x2 y2 xy
Первый          
Второй          
Третий          
Четвертый          
Пятый          
Шестой          
Седьмой          
Восьмой          
Девятый          
Десятый          
Одиннадцатый          
Двенадцатый          
           

 

;

;

Заметим, что число степеней свободы равно в нашем случае 10. Обратившись к таблице критических значений коэффициентов Пирсона, узнаем, что при данной степени свободы на уровне значимости 0,999 будет считаться достоверным любой показатель корреляции переменных выше, чем 0,823. Это дает нам право считать полученный коэффициент свидетельством несомненной корреляции рядов x и y.


Применение линейного коэффициента корреляции становится неправомерным в тех случаях, когда вычисления производятся в пределах не интервальной, а порядковой шкалы измерения. Тогда используют коэффициенты ранговой корреляции. Разумеется, результаты при этом получаются менее точными, так как сопоставлению подлежат не сами количественные характеристики, а лишь порядки их следования друг за другом.

Среди коэффициентов ранговой корреляции в практике психологических исследований довольно часто применяют тот, который предложен английским ученым Чарльзом Спирменом (1863-1945), известным разработчиком двухфакторной теории интеллекта.

Используя соответствующий пример, рассмотрим действия, необходимые для определения коэффициента ранговой корреляции Спирмена.

Формула его вычисления выглядит следующим образом:

;

где d - разности между рангами каждой переменной из рядов x и y,

n - число сопоставляемых пар.

Пусть x и y - показатели успешности выполнения испытуемыми некоторых видов деятельности (оценки индивидуальных достижений). При этом мы располагаем следующими данными:

Испытуемые x ранг x y ранг y d d2
Первый            
Второй   2,5     2,5 6,25
Третий   2,5     2,5 6,25
Четвертый            
Пятый       7,5 2,5 6,25
Шестой   6,5   7,5    
Седьмой   6,5     2,5 6,25
Восьмой            
Девятый            
Десятый            

 

Заметим, что вначале производится раздельное ранжирование показателей в рядах x и y. Если при этом встречается несколько равных переменных, то им присваивается одинаковый усредненный ранг.

Затем осуществляется попарное определение разности рангов. Знак разности несущественен, так как по формуле она возводится в квадрат.

В нашем примере сумма квадратов разностей рангов равна 178. Подставим полученное число в формулу:

 

 

Как мы видим, показатель коэффициента корреляции в данном случае составляет ничтожно малую величину. Тем не менее, сопоставим его с критическими значениями коэффициента Спирмена из стандартной таблицы.

 

n -2 0.05 0.01 n -2 0.05 0.01 n -2 0.05 0.01
  0,94     0,48 0,62   0,37 0,48
  0,85     0,47 0,60   0,36 0,47
  0,78 0,94   0,46 0,58   0,36 0,46
  0,72 0,88   0,45 0,57   0,36 0,45
  0,68 0,83   0,44 0,56   0,34 0,45
  0,64 0,79   0,42 0,54   0,34 0,44
  0,61 0,76   0,42 0,53   0,33 0,43
  0,58 0,73   0,41 0,52   0,33 0,43
  0,56 0,70   0,40 0,51   0,33 0,42
  0,54 0,68   0,39 0,50   0,32 0,41
  0,52 0,66   0,38 0,49   0,32 0,41
  0,50 0,64   0,38 0,48   0,31 0,40

 


Вывод: между указанными рядами переменных x и y корреляция отсутствует.

Надо заметить, что использование процедур ранговой корреляции предоставляет исследователю возможность определять соотношения не только количественных, но и качественных признаков, в том, разумеется, случае, если последние могут быть упорядочены по возрастанию выраженности (ранжированы).

Нами были рассмотрены наиболее распространенные, пожалуй, на практике способы определения коэффициентов корреляции. Иные, более сложные или реже применяемые разновидности данного метода при необходимости можно найти в материалах пособий, посвященных измерениям в научных исследованиях.

 

ОСНОВНЫЕ ПОНЯТИЯ: корреляция; корреляционный анализ; коэффициент линейной корреляции Пирсона; коэффициент ранговой корреляции Спирмена; критические значения коэффициентов корреляции.

 

Вопросы для обсуждения:

1. Каковы возможности корреляционного анализа в психологических исследованиях? Что можно и что нельзя выявить с помощью данного метода?

2. Какова последовательность действий при определении коэффициентов линейной корреляции Пирсона и ранговой корреляции Спирмена?

 

Упражнение 1:

Установите, являются ли статистически достоверными следующие показатели корреляции переменных:

а) коэффициент Пирсона +0,445 для данных двух тестирований в группе, состоящей из 20 испытуемых;

б) коэффициент Пирсона -0,810 при числе степеней свободы равном 4;

в) коэффициент Спирмена +0,415 для группы из 26 человек;

г) коэффициент Спирмена +0,318 при числе степеней свободы равном 38.

 

Упражнение 2:

Определите коэффициент линейной корреляции между двумя рядами показателей.

Ряд 1: 2, 4, 5, 5, 3, 6, 6, 7, 8, 9

Ряд 2: 2, 3, 3, 4, 5, 6, 3, 6, 7, 7

 

Упражнение 3:

Сделайте выводы о статистической достоверности и степени выраженности корреляционных отношений при числе степеней свободы равном 25, если известно, что составляет: а) 1200; б) 1555; в) 2300

 

Упражнение 4:

Выполните всю последовательность действий, необходимых для определения коэффициента ранговой корреляции между предельно обобщёнными показателями успеваемости школьников («отличник», «хорошист» и т.д.) и характеристиками выполнения ими теста умственного развития (ШТУР). Сделайте интерпретацию полученных показателей.

 

Упражнение 5:

С помощью коэффициента линейной корреляции рассчитайте показатели ретестовой надежности имеющегося в вашем распоряжении теста интеллекта. Выполните исследование в студенческой группе с интервалом времени между тестированиями в 7-10 дней. Сформулируйте выводы.

 







Date: 2015-08-15; view: 528; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.03 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию