Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Игры 2 х n и m х 2





 

Допустим, платежная матрица задана и имеет вид 2 х n:

 

  В1 В2 Вn Игрок А имеет две стратегии, а игрок В – неограниченное число стратегий.
А1 a11 a12 a1n
А2 a21 a22 a2n

 

 
 

Допустим, платежная матрица имеет вид m х 2:

 

 
 

 


 
 

Минимум М находится на пересечении стратегий А1 и Аm, остальные отбрасываются, далее игра решается как задача 2 х 2.

 

Пример. Пусть игра задана в виде платежной матрицы

 

  В1 В2 В3 Игра (2 х 3) не имеет седловой точки a = 4, b = 5, a ¹ b, имеем игру в смешанных стратегиях.
А1      
А2      

 

 

 
 

Решим задачу графически и аналитически. Для игрока А: получаем игру 2 х 2, используя стратегии В2 и В3 игрока В:

 

 
 

Для игрока В:

 

Тема 8. Элементы теории статистических игр. Игры с «природой»

 

В рассмотренных случаях оба игрока действовали наилучшим для себя способом. Однако встречаются конфликтные ситуации, в которых одна из сторон действует неопределенно, она безразлична к выигрышу и не стремится воспользоваться промахами другой стороны. Такая игра возникает, когда у нас нет достаточной осведомленности об условиях данной операции (например, условия погоды, покупательский спрос на продукцию и т.д.). Игры такого типа, когда человек вынужден выбирать стратегию (принять решение) в условиях неопределенности, называют играми с «природой», состояние которой ему полностью не известно.

Под термином «природа» будем понимать комплекс внешних обстоятельств, при которых приходится принимать решения. Игры с «природой», т.е. когда одним из участников является человек (игрок С), а другим - «природа» (игрок П), называют также статистическими играми.

В общем виде постановка задачи теории статистических игр производится следующим образом. Пусть имеется m возможных стратегий (линий поведения) - С1, С2, …, Сi,…, Сm; условия обстановки – состояние «природы» нам точно не известно, однако о них можно сделать n предположений П1, П2, …, Пj,…Пn, которые являются как бы стратегиями «природы», результат игры – «выигрыш» аij - при каждом сочетании стратегий задан матрицей игры

 

  П1 П2 Пj Пn
С1 а11 а12 а 1j а 1n
С2 а21 а 22 а 2j а 2n
Сi   аi1 а i2 а ij а in
Сm аm1 а m2 а mj а mn

 

Необходимо выбрать наилучшую стратегию поведения, которая по сравнению с другими наиболее выгодна.

Допустим, фирма должна определить уровень выпуска продукции и предоставления услуг на некоторый период времени, так, чтобы удовлетворить потребности клиентов. Точная величина спроса на продукцию и услуги неизвестна, но ожидается, что в зависимости от соотношения сил на рынке товаров, действий конкурентов и погодных условий спрос может принять одно из четырех возможных значений: 300, 400, 500 или 600 изделий. Маркетинговые исследования позволили определить возможные вероятности возникновения этих ситуаций, которые соответственно составили 0,2; 0,4; 0,3 и 0,1. Для каждого из возможных значений спроса существует наилучший уровень предложения с точки зрения возможных затрат и прибыли. Отклонение от этих уровней связано с риском и может привести к дополнительным затратам либо из-за превышения предложения над спросом, либо из-за неполного удовлетворения спроса. В первом случае это связано с необходимостью хранения нереализованной продукции и потерями при реализации ее по сниженным ценам, а также с транспортными расходами по доставке ее в другие регионы, где она будет пользоваться спросом. Во втором случае это связано с дополнительными затратами по оперативному выпуску недостающей продукции, поскольку иначе это будет связано с риском потери клиентов. Данную ситуацию можно представить в виде матрицы игры

 

 

Объем предложения (стратегия выпуска продукции) Возможные колебания спроса на продукцию
П1 = 300 П2 = 400 П3 = 500 П4 = 600
Вероятности состояния спроса
q1 = 0,2 q2 = 0,4 q3 = 0,3 q4 = 0,1
Размер прибыли (убытков) в зависимости от колебаний спроса аij
С1 = 300        
С2 = 400        
С3 = 500 -18      
С4 = 600 -42 -8    

 


Из этой таблицы видно, что при обстановке П1 решение С1 в 5 раз лучше, чем С2. Необходимо выбрать наиболее выгодную стратегию. Наибольший выигрыш в 60 ден.ед. дает стратегия С4 при возникновении обстановки П4.

В теории статистических игр вводится специальный показатель, который называется риском. Риск показывает, насколько выгодна применяемая стратегия в данной конкретной обстановке с учетом ее неопределенности. Риск рассчитывается как разность между ожидаемым результатом действий при наличии точных данных об обстановке и результатом, который может быть достигнут, если эти данные точно не известны. Например, если точно известно, что будет иметь место обстановка П4, то лучшее решение – С4, обеспечивающее выигрыш в 60 ден.ед. Поскольку точно не известно, какую обстановку ожидать, то могла быть выбрана стратегия С1, дающая выигрыш в обстановке П4 всего 8 ден.ед. При этом потеря в величине выигрыша составит 60 – 8 = 52 ден.ед. Величины риска определяются следующими выражениями:

 

rij = аij - аij = bj - aij,

 

где аij – размер «выигрыша» при выборе i–й стратегии при j–м состоянии «природы»; bj - максимальный «выигрыш» для j–й обстановки; rij - величина риска при выборе i–й стратегии при j–й обстановке. Составим матрицу рисков

 

  П1 П2 П3 П4
С1        
С2        
С3        
С4        

 

Матрица рисков дает возможность непосредственно оценить качество различных решений и установить, насколько полно реализуются в них существующие возможности достижения успеха при наличии риска. Например, основываясь на матрице игры, можно прийти к выводу, что решение С1 при обстановке П3 равноценно решению С3 при обстановке П2, поскольку выигрыш в обоих случаях равен 16 ден.ед. Однако риск при этом неодинаков и составляет соответственно 34 и 24 ден.ед.

 







Date: 2015-07-24; view: 405; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию