![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Матричные игры
Пусть игрок А имеет m чистых стратегий А1, А2, … Аi,…Аm, а игрок В имеет n чистых стратегий B1, B2, … Bj,…Bn. Такая игра называется игрой m х n. Если игрок А пользуется стратегией Аi, а игрок В пользуется стратегией Вj, то обозначим через аij выигрыш игрока А, если аij > 0, или проигрыш игрока А, если аij < 0. Очевидно, что – это одновременно проигрыш игрока В, если аij > 0, и выигрыш игрока В, если аij < 0. Тогда мы можем привести игру к матричной форме, т.е. составить матрицу, которая называется платежной матрицей, или матрицей игры:
Каждая строка этой матрицы соответствует некоторой стратегии игрока А, а каждый столбец – некоторой стратегии игрока В. Пример игры. Два игрока выкидывают на пальцах числа, причем четное число пальцев – это выигрыш игрока А, нечетное – проигрыш игрока А. Для простоты введем ограничение – игроки выкидывают от 1 до 3 пальцев. Составим платежную таблицу:
Проанализируем матрицу игры: для каждой чистой стратегии игрока А определим минимальный выигрыш, т.е. определим
ai = В нашем примере a1 = -3; a2 = -5; a3 = -5. Далее, среди полученных значений li-х определим максимальное
a = В нашем примере a = -3, т.е. игрок А проигрывает 3 очка. Это число a называется нижней ценой игры, а соответствующая ему стратегия называется максиминной. В нашем примере стратегия А1 максиминная, т.е. из всех наихудших ситуаций выбирают наилучшую. Эта величина (a) – гарантированный «выигрыш» игрока А, какую бы стратегию ни выбрал игрок В. Меньше нижней цены игры игрок А никогда не «выиграет». Игрок В старается максимально уменьшить свой проигрыш. Для этого определяется верхняя цена игры
b =
Соответствующая стратегия называется минимаксной. В нашем примере будет две минимаксных стратегии В1 и В2. При этом игрок В проигрывает 4 очка. Теорема 1. В любой матричной игре справедливо неравенство a £ b, т.е. нижняя цена игры никогда не превосходит верхнюю.
Date: 2015-07-24; view: 352; Нарушение авторских прав |