Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Генератор смешанного возбуждения
Генератор смешанного возбуждения (рис. 28.8, а) имеет параллельную и последовательную обмотки возбуждения. Поток возбуждения создается в основном параллельной обмоткой. Последовательная обмотка обычно включается согласно с параллельной (чтобы МДС обмоток складывались), что обеспечивает получение жесткой внешней характеристики генератора
В режиме х.х. генератор имеет только параллельное возбуждение, так как 1 = 0. С появлением нагрузки возникает МДС последовательной обмотки возбуждения, которая подмагничивает машину и при этом полностью компенсирует размагничивающее действие реакции якоря и падение напряжения в цепи якоря. Внешняя характеристика в этом случае становится наиболее жесткой (рис. 28.8, б, кривая 2), т. е. напряжение на зажимах генератора при увеличении тока остается почти неизменным. Если же требуется, чтобы напряжение на зажимах потребителя (в конце линии) во всем диапазоне нагрузок оставалось практически неизменным, то число витков последовательной обмотки увеличивают так, чтобы МДС этой обмотки компенсировала еще и падение напряжения в приводах линии. Внешняя характеристика при этом получает вид кривой 1. При встречном включении обмоток возбуждения напряжение генератора с ростом тока нагрузки резко уменьшается (кривая 3), что объясняется размагничивающим действием последовательной обмотки возбуждения, МДС которой направлена против МДС параллельной обмотки. Встречное включение обмоток применяют лишь в генераторах специального назначения, например в сварочных, где необходимо получить круто падающую внешнюю характеристику. Генераторы смешанного возбуждения с согласным включением обмоток возбуждения применяют для питания силовой нагрузки во всех случаях, когда требуется постоянство напряжения в линии, даже при резких изменениях тока нагрузки. ГЛАВА 29. КОЛЛЕКТОРНЫЕ ДВИГАТЕЛИ Основные понятия
Электрические машины обладают свойством обратимости, т. е. они могут работать как в режиме генератора, так и в режиме двигателя. Поэтому если машину постоянного тока подключить к источнику энергии постоянного тока, то в обмотке возбуждения и в обмотке якоря машины появятся токи. Взаимодействие тока якоря с полем возбуждения создает на якоре электромагнитный момент М, который является не тормозящим, как это имело место в генераторе, а вращающим. Под действием электромагнитного момента якоря машина начнет вращаться, т. е. машина будет работать в режиме двигателя, потребляя из сети электрическую энергию и преобразуя ее в механическую. В процессе работы двигате- ля его якорь вращается в магнитном поле. В обмотке якоря индуцируется ЭДС Еа, направление которой можно определить по правилу «правой руки». По своей природе она не отличается от ЭДС, наводимой в обмотке якоря генератора. В двигателе же ЭДС направлена против тока I а и поэтому ее называют противоэлектро-движущей силой (противо-ЭДС) якоря (рис. 29.1). Для двигателя, работающего с постоянной частотой вращения, (29.1) Из (29.1) следует, что подведенное к двигателю напряжение уравновешивается противо-ЭДС обмотки якоря и падением напряжения в цепи якоря. На основании (29.1) ток якоря I a=(U – E a)/Σ r (29.2) Умножив обе части уравнения (29.1) на ток якоря Iа, получим уравнение мощности для цепи якоря: UIa = I 2 a Σ r + EaIa, (29.3) где UIa — мощность, в цепи обмотки якоря; I а2Σ r — мощность электрических потерь в цепи якоря. Для выяснения сущности выражения ЕаIа проделаем следующее преобразование: или Но согласно (25.24) тогда ЕаIа = Мω = Р эм, (29.4) где ω = 2π n /60 — угловая частота вращения якоря; Р эм — электромагнитная мощность двигателя. Следовательно, выражение ЕаIа представляет собой электромагнитную мощность двигателя. Преобразовав выражение (29.3) с учетом (29.4), получим
Анализ этого уравнения показывает, что с увеличением нагрузки на вал двигателя, т. е. с увеличением электромагнитного момента М, возрастает мощность в цепи обмотки якоря UIа, т. е. мощность на входе двигателя. Но так как напряжение, подводимое к двигателю, поддерживается неизменным (U =const), то увеличение нагрузки двигателя сопровождается ростом тока в обмотке В зависимости от способа возбуждения двигатели постоянного тока, так же как и генераторы, разделяют на двигатели с возбуждением от постоянных магнитов (магнитоэлектрические) и с электромагнитным возбуждением. Последние в соответствии со схемой включения обмотки возбуждения относительно обмотки якоря подразделяют на двигатели параллельного (шунтовые), последовательного (сериесные) и смешанного (компаундные) возбуждения. В соответствии с формулой ЭДС Еа = се Ф п частота вращения двигателя (об/мин) п=Еа/(се Ф ). Подставив значение Еа из (29.1), получим (29.5) т. е. частота вращения двигателя прямо пропорциональна напряжению и обратно пропорциональна магнитному потоку возбуждения. Физически это объясняется тем, что повышение напряжения U или уменьшение потока Ф вызывает увеличение разности (U — Еа); это, в свою очередь, ведет к росту тока Iа [см. (29.2)]. Вследствие этого возросший ток повышает вращающий момент, и если при этом нагрузочный момент остается неизменным, то частота вращения двигателя увеличивается. Из (29.5) следует, что регулировать частоту вращения двигателя можно изменением либо напряжения U, подводимого к двигателю, либо основного магнитного потока Ф, либо электрического сопротивления в цепи якоря r. Направление вращения якоря зависит от направлений магнитного потока возбуждения Ф и тока в обмотке якоря. Поэтому, изменив направления какой-либо из указанных величин, можно изменить направление вращения якоря. Следует иметь в виду, что переключение общих зажимов схемы у рубильника не дает изменения направления вращения якоря, так как при этом одновременно изменяется направление тока и в обмотке якоря, и в обмотке возбуждения.
Date: 2015-07-24; view: 637; Нарушение авторских прав |