Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Последовательное, параллельное и параллельно-последовательное соединение элементов
Последовательное соединение элементов - называется такое соединение, при котором отказ одного элемента приводит к отказу остальных элементов. Техническое понятие последовательного соединения может не совпадать с понятием в смысле надежности. Условимся считать, что вероятность безотказной работы одних элементов не зависит от вероятности безотказной работы других элементов, т.е. отказ или изменение одной группы элементов не зависит и не влияет на вероятность безотказной работы других в этом случае элементы называются независимыми, для последовательного соединения элементов вероятность безотказной работы определяется согласно теорем вероятности: . Согласно (1) результирующая надежность при последовательном соединение есть произведение вероятностей безотказной работы отдельных элементов: . , . Из (2), (3), (4) следует, что при последовательном соединении элементов интенсивности отказов складываются. Интенсивность отказа соединения есть сумма интенсивностей отказов отдельных элементов. Интенсивность отказа последовательного соединения всегда больше любого из этих элементов. Это приводит к тому, что вероятность безотказной работы последовательного соединения всегда меньше вероятности самого надежного элемента в этой системе. При экспоненциальном законе надежности: , . Среднее время при экспоненциальном законе надежности: . Если элементы соединения имеют одинаковую интенсивность отказов , то в этом случае вероятность безотказной работы: , где n – число элементов в соединении. Тогда средняя наработка . Предположим, что требуется найти вероятность безотказной работы соединения из 4-х элементов. 2 из которых имеют экспоненциальную функцию надежности, а 2 – подчиняются закону Вейбулла. - экспоненциальный закон надежности; - закон распределения Вейбулла. Тогда суммарная безотказность работы всего соединения будет равна: , , если подставить в последнее равенство , то можно найти вероятность безотказной работы соединения. Может быть решена и обратная задача. Пусть задана вероятность безотказной работы. Требуется определить какая допустимая при этом суммарная интенсивность. Все элементы имеют экспоненциальный закон надежности. , , . Параллельное в смысле надежности называется такое соединение элементов, когда отказ всего соединения наступит тогда, когда отказывают все элементы, входящие в соединение. При расчете надежности предполагается, что элементы являются независимыми, т.е. отказ одного из них не влияет на работу других.
Вероятность отказа всего соединения произойдет в случае отказа всего соединения: , Вероятность отказа системы согласно (1) равна произведению отказов всех его элементов. Вероятность безотказной системы: . В случае когда вероятность безотказной работы отдельных элементов подчиняются экспоненциальному закон надежности: . Из (4) следует, что функция надежности параллельного соединения элементов, в отличие от последовательного соединения, при экспоненциальной функции отдельных элементов уже не является экспоненциальным законом, если функции надежности элементов одинаковы. , , , . При экспоненциальном законе надежности: , , , . Математическое ожидание при экспоненциальном законе надежности: . Если продолжительность времени работы системы не велико, так что произведение интенсивностей отказов на время работы много меньше 1, то можно считать: , , тогда сохраняя два первых члена в разложении экспоненты получим, что вероятность безотказной работы равна: , .
Параллельно-последовательное соединение элементов. Наиболее распространенными являются 2 схемы параллельно- последовательного соединения. В 1 –ой схеме имеется m параллельных цепей по n одинаковых элементов в каждой цепи. Элементы как и прежде считаются независимыми. Вероятность безотказной работы каждой j цепи: . Вероятность безотказной работы всей схемы: . Во второй схеме n последовательно соединенных групп, состоящие из m одинаковых параллельно соединенных элементов. . Тогда для всей схемы: . В большинстве случаев при практических расчетах сложные схемы можно разбить на части, состоящие из простейших соединений. При составлении структурной схемы надежности в качестве отдельных элементов могут быть взяты элементарные звенья или целые узлы. Если у этих узлов известны характеристики надежности. Date: 2015-07-23; view: 11353; Нарушение авторских прав |