Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Прямолинейные образующие на поверхности гиперболического параболоида





Рассмотрим уравнение гиперболического параболоида:

для удобства сделаем замену и Тогда уравнение запишется в виде

Разложим на множители:

Аналогично с предварительными соображениями получаем уравнения двух семей прямолинейных образующих гиперболического параболоида:

и

 

 

Теорема. На поверхности гиперболического параболоида лежат две семьи прямых, которые имеют следующие свойства:

· через любую точку гиперболического параболоида проходит ровно одна прямая с каждой семьи ;

· любые две образующие из разных семей пересекаются;

· любые две прямые с одной семьи является скрещивающимися;

· любые три прямые с одной семьи параллельные некоторой плоскости.

Доказательство можно посмотреть в методичке.

Пример. Найдите уравнение плоскости, параллельной плоскости и пересекает гиперболический параболоид по двум прямолинейным образующим. Найдите канонические уравнения этих образующих.

Запишем уравнение параллельной плоскости Найдем ее пересечение с гиперболическим параболоидом.

Эта кривая второго порядка распадается на пару прямых, которые пересекаются, если есть Итак плоскость, которую мы ищем, имеет уравнение Две прямые, лежат в этой плоскости и является пересечением с параболоидом:

и

или и

Уравнения этих прямых в пространстве:

и

Найдем канонические уравнения. Для первой прямой:

Для второй прямой:






Date: 2015-07-01; view: 2859; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.004 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию