Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Расчет параметров линейного уравнения регрессии МНК





Уравнение регрессии – это уравнение, описывающее корреляционную зависимость между признаком-результатом Y и признаками факторами (одним или несколькими).

Наиболее часто для описания статистической связи признаков используется линейное уравнение регрессии. Внимание к линейной форме связи объясняется четкой экономической интерпретацией параметров линейного уравнения регрессии, ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчетов преобразуют (путем логарифмирования или замены переменных) в линейную форму. Линейное парное уравнение регрессии имеет вид:

,

где i=1;n, а п – объем совокупности (число наблюдений).

Оценки параметров линейной регрессии (а и b) могут быть найдены разными методами. Наиболее распространенным является метод наименьших квадратов (МНК), который позволяет получить такие оценки параметров а и b, при которых сумма квадратов отклонений фактических значений результативного признака – от расчетных (теоретических) значений – (рассчитанных по уравнению регрессии) минимальна:

.

В случае линейной парной зависимости:

.

В результате получим систему из двух нормальных линейных уравнений:

Согласно методу наименьших квадратов, линия выбирается так, чтобы сумма квадратов расстояний по вертикали между точками корреляционного поля и этой линией была бы минимальной.

 






Date: 2016-08-30; view: 33; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию