Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Классификация связей в статистике





Признаки, которыми характеризуются единицы совокупности, могут быть взаимосвязанными. Взаимосвязанные признаки выступают в одной из ролей:

•роли признака-результата (Y);

•роли признака-фактора, значения которого определяют значение признака-результата (X).

Связи классифицируют по степени тесноты, направлению, форме, числу факторов.

1) По степени тесноты связи делят на статистические и функциональные.

Статистическая (стохастическая) связь – это такая связь между признаками, при которой для каждого значения признака-фактора X признак-результат Y может в определенных пределах принимать любые значения с некоторыми вероятностями; при этом его статистические (массовые) характеристики (например, среднее значение) изменяются по определенному закону.

Y=f(X, и),

где Y – фактическое значение результативного признака;

f(X) – часть результативного признака, сформировавшаяся под воздействием фактора X (или множества факторов: Y=f(X1,...,Xm);

и – случайная составляющая, часть результативного признака, возникшая вследствие действия прочих (неучтенных) факторов, а также ошибок измерения признаков.

Корреляционная связь – частный случай статистической связи. При корреляционной связи с изменением значения признака X среднее значение признака Y закономерно изменяется, в то время как в каждом отдельном случае признак Y (с различными вероятностями) может принимать множество различных значений.

Функциональная связь – такая связь, когда каждому возможному значению признака-фактора X соответствует одно или несколько строго определенных значений результативного признака Y. Она имеет место, когда все факторы, действующие на результативный признак, известны и учтены в модели и ошибки измерения отсутствуют.

Y=f(X).

2) По направлению связи делятся на прямые и обратные.

При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора.

При обратной связи направление изменения результативного признака противоположно направлению изменения признака-фактора.

3) По форме связи (виду функции f) связи делят на линейные (прямолинейные) и нелинейные (криволинейные) связи.

Линейная связь отображается прямой линией; криволинейная – кривой (параболой, гиперболой и т. п.).

4) По количеству факторов, действующих на результативный признак, связи подразделяют на однофакторные (парные) и многофакторные связи.

 







Date: 2016-08-30; view: 1288; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию