![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Первое начало термодинамики ⇐ ПредыдущаяСтр 10 из 10
Первое начало термодинамики утверждает, что изменение внутренней энергии термодинамической системы (тела) может быть осуществлено двумя путями: путём совершения механической работы и путём теплопередачи. Энергия, переданная системе путём теплопередачи, называется количеством теплоты. Таким образом, количество теплоты может быть определено как разность изменения внутренней энергии системы и механической работы, совершённой над системой:
где Так как работа, совершенная над системой Теплота
Если к термодинамической системе подводится элементарное количество теплоты
Отметим принципиальное отличие величины
Интегралы (суммы) от малых величин
В отличие от внутренней энергии, являющейся функцией состояния, теплота и работа функциями состояния не являются, а зависят от того, каким образом система переведена из одного состояния в другое. С учетом формул (1.4) - (1.6) интегрирование выражения (1.3) дает
Эта формула представляет собой запись первого начала термодинамики применительно к случаю перехода термодинамической системы из некоторого первого состояния во второе. По своему физическому смыслу первое начало термодинамики представляет собой закон сохранения (изменения) энергии в термодинамике. Если, согласно закону изменения энергии в механике, работа неконсервативных сил равна приращению механической энергии системы (в частности, имеющая отрицательный знак работа сил трения равна уменьшению механической энергии системы), то согласно первому началу термодинамики, приращение внутренней энергии термодинамической системы равно сумме работы внешних сил, совершенной над системой, и энергии, переданной системе путём теплопередачи. В случае, если термодинамические процессы в системе квазиравновесные, и потоки энергии, вещества и т.д. в ней отсутствуют, то можно пренебречь внутренним трением, считая, что изменения объёма и давления определяют изменение состояния системы. Работа
где:
где
Для элементарной работы
Работа при конечных изменениях объёма тела может быть определена путем интегрирования выражения (1.10):
Этот интеграл зависит от пути перехода из состояния с объемом Рис. 1.2 иллюстрирует зависимость величины интеграла (1.11), численно равного площади под кривой
В зависимости от траектории I или II перехода из первого состояния во второе, площадь под кривой Задача 1.1. Найти работу, совершаемую газом, при его расширении от объема Решение: В соответствии с формулой (1.11) имеем: 111. Адиабатический процесс. Уравнение Пуассона. Адиабатный процесс. Уравнение Пуассона для адиабатного процесса. Уравнение адиабаты (уравнение Пуассона). Адиабатическим называется процесс, происходящий без теплообмена с окружающей средой. Следовательно, для него характерно наличие хорошей изоляции ТС от внешней среды или высокая скорость термодинамического процесса, при которой теплообмен незначителен. Поскольку обратимые процессы, в отличии от адиабатных, являются бесконечно медленными, то о равновесности последних можно говорить только применительно к определенным областям ТС. Поскольку для адиабатического процесса dQ = 0, то dA = - dU. Следовательно, p·dV = - (m/m)·Cv·dT. (13.18) Следовательно, работа газа при адиабатическом расширении равна A1-2 = (m/m)·Cv·(T1 - T2). (13.19) Выразив величину P из уравнения Менделеева-Клапейрона и подставив ее в (13.18), после соответствующих преобразований получим уравнение адиабаты: T·Vg-1 = const или p·Vg = const. (13.20) Уравнение (13.20) называется также уравнением Пуассона. На диаграмме P-V адиабата испытывает более резкое падание, чем изотерма (см. рис. 13.4), т.е. в любой точке кривой модуль производной от давления по объему для нее больше. Действительно, из уравнения адиабаты можно показать, что dp/dV = - g·p/V > p/V. Date: 2016-07-22; view: 269; Нарушение авторских прав |