Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Пример применения критерия Сэвиджа





Применим изложенный выше алгоритм действий для принятия решения в условиях задачи из п.2.7 (табл.2.2).

1. Найдем наибольшую возможную величину прибыли для каждого сценария развития региона:

y1 = max (x11, x21) = max(45, 20) = 45

y2 = max (x12, x22) = max(25, 60) = 60

y3 = max (x13, x23) = max(50, 25) = 50

2. Рассчитаем значения "сожалений" для каждого проекта при каждом сценарии (т.е. найдем недополученную прибыль по сравнению с максимально возможной при данном сценарии развития). Составим из полученных значений "матрицу сожалений" (см. табл.2.3).

для проекта Х1:

r11 = y1 - x11 = 45 - 45 = 0

r12 = y2 - x12 = 60 - 25 = 35

r13 = y3 - x13 = 50 - 50 = 0

для проекта Х2:

r21 = y1 - x21 = 45 - 20 = 25

r22 = y2 - x22 = 60 - 60 = 0

r23 = y3 - x23 = 50 - 25 = 25

Табл.2.3. Матрица сожалений R (для примера).  
Альтер­нативы (Xi) Состояния природы (j) Макс. "сожаление" Si  
 
X1 0 35 0 35  
X2 20 0 25 25  
yj 45 60 50    

4. В полученной матрице по каждой строке найдем наибольшую величину "сожаления" для каждого проекта (последний столбец в табл.2.3). Это значение соответствует оценке данной альтернативы по критерию Сэвиджа.

S1 = max(0, 35, 0) = 35

S2 = max(25, 0, 25) = 25

5. Сравним полученные величины и найдем проект с минимальным (!) значением критерия. Он и будет оптимальным:

35 > 25 => S1 > S2 => X* = X2

ЛПР, руководствующийся при принятии решений критерием Сэвиджа, выберет проект Х2.

Еще раз подчеркнем, что в отличие от остальных критериев, наилучшей альтернативой является та, для которой значение критерия Сэвиджа минимально, поскольку критерий отражает наибольший из возможных недополученных выигрышей для данной альтернативы. Разумеется, чем меньше можно недополучить, тем лучше.

 

 

?? Принятие решений в условиях неопределённости

 



Условиями неопределённости считается ситуация, когда результаты принимаемых решений неизвестны. Неопределенность подразделяется на стохастическую (имеется информация о распределении вероятности на множестве результатов), поведенческую (имеется информация о влиянии на результаты поведения участников), природную (имеется информация только о возможных результатах и отсутствует о связи между решениями и результатами) и априорную (нет информации и о возможных результатах). Задача обоснования решений в условиях неопределенности всех типов, кроме априорной, сводится к сужению исходного множества альтернатив на основе информации, которой располагает ЛПР. Качество рекомендаций для принятия решений в условиях стохастической неопределенности повышается при учете таких характеристик личности ЛПР, как отношение к своим выигрышам и проигрышам, склонность к риску. Обоснование решений в условиях априорной неопределенности возможно построением алгоритмов адаптивного управления

 

Принятие решений в условиях неопределенности основано на том, что вероятности различных вариантов ситуаций развития событий субъекту, принимающему рисковое решение, неизвестны. В этом случае при выборе альтернативы принимаемого решения субъект руководствуется, с одной стороны, своим рисковым предпочтением, а с другой — соответствующим критерием выбора из всех альтернатив по составленной им «матрице решений».

Основные критерии, используемые в процессе принятия решений в условиях неопределенности, представлены ниже.

· критерий Вальда (критерий «максимина»)

· критерий «максимакса»

· критерий Гурвица (критерий «оптимизма-пессимизма» или «альфа-критерий»)

· критерий Сэвиджа (критерий потерь от «минимакса»)

 

 

3 Классификация управленческих решений

2.2. Типология управленческих задач

2.3. Типология управленческих решений

2.4. Формы управленческих решений

 

 






Date: 2016-05-15; view: 794; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию