Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Критерий согласияФишера





Задача сравнения дисперсий сводится к проверке нулевой гипотезы Н0, заключающейся в принадлежности двух выборок к одной и той же генеральной совокупности. Пусть необходимо сравнить две дисперсии и , полученные при обработке результатов моделирования и имеющие k1 и k2 степеней свободы соответственно, причем > . Для того чтобы опровергнуть нулевую гипотезу Н0: = необходимо при уровне значимости γ указать значимость расхождения между и . При условии независимости выборок, взятых из нор­мальных совокупностей, в качестве критерия значимости используется распределение Фишера (F -критерий) F= / , которое зависит только от числа степеней свободы k1=N1 1, k2=N2 1, где N1 и N2 – объемы выборок для оценки и соответственно.

Алгоритм применения критерия Фишера следующий: 1) вычисляется выборочное отношение F= / ; 2) определяется число степеней свободы k1=N1k2=N2 1; 3) при выбранном уровне значимости γ по таблицам F -распределения находятся значения границ критической области ; 4) проверяется неравенство F1≤F≤F2; если это неравенство выполняется, то с доверительной вероятностью β нулевая гипотеза Н0: = может быть принята.

Хотя рассмотренные оценки искомых характеристик процесса функционирования системы, полученные в результате компьютерного эксперимента с моделью, являются простейшими, тем не менее, они охватывают большинство случаев, встречающихся в практике обработки результатов моделирования системы с целью ее исследования и проектирования.

 







Date: 2016-02-19; view: 359; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.009 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию