Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Диагонализация квадратной матрицы
Рассмотрим случай неособенной модальной матрицы М, так что существует обратная матрица М-1 (это соответствует случаю различных характеристических чисел λi или случаю симметрической матрицы А), при этом решение уравнения можно записать в следующем виде: или Чтобы получить диагональную матрицу Λ, необходимо получить матрицу M-1AM , т.е. осуществить преобразование: Более высокие степени А приводятся к диагональному виду таким же способом. Например, Преобразование вида B = Q-1AQ, где А и B – квадратные матрицы, а Q – неособенная квадратная матрица, называется коллинеарным преобразованием, или преобразованием подобия. Итак, предполагая, что характеристические числа А различные, применим преобразование подобия Λ=М-1АМ, используя модальную матрицу М, к уравнениям состояния и наблюдения линейной стационарной системы в стандартной форме (см. п. 2.4, соответствующая структурная схема приведена на рис. 2.10): Введя линейное преобразование z = Mq, где М – модальная матрица, подставим его в эти уравнения и получим: . Умножение первого уравнения слева на матрицу М-1, обратную модальной, дает: . Поскольку М – модальная матрица, то преобразование подобия М-1АМ приводит к диагональной матрице Λ. Главными диагональными элементами Λ служат характеристические числа λ1, λ2,…,λn. Следовательно, , где Λ = М-1АМ, Bn = M-1B, Cn = CM и Dn = D. Эта форма записи уравнений известна как нормальная форма уравнений состояния. При этом дифференциальные уравнения развязаны относительно переменных состояния q1, q2,…, qn, т.е. они имеют вид: Пример. Записать уравнения состояния в нормальной форме для динамической системы, структурная схема которой приведена на рис. 2.12.
Рис. 2.12. Блок-схема стандартной формы уравнений динамической системы из примера
Соответствующая рисунку 2.12 стандартная форма уравнений состояния имеет вид: Модальные матрицы М и М-1, соответствующие матрице А, а также диагональная матрица Λ = М-1АМ, и прочие B n= M-1B, Cn = CM и Dn = D равны: Нормальная форма уравнений состояния имеет вид: где q(t) =М-1z(t) или q1 = 2z1+z2 , q2 = – z1 – z2. Блок-схема этих уравнений показана на рис. 2.13.
Рис. 2.13. Блок-схема нормальной формы уравнений динамической системы из примера
Вопросы к разделу 2.6
Date: 2016-02-19; view: 558; Нарушение авторских прав |