![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Свойства математического ожидания. Свойство 1. Математическое ожидание постоянной равно самой постоянной:
Свойство 1. Математическое ожидание постоянной равно самой постоянной:
Доказательство. Если рассматривать С как дискретную случайную величину, принимающую только одно значение С с вероятностью р = 1, то М (С) = С ´ 1 = С.
Свойство 2. Постоянный множитель можно выносит за знак математического ожидания:
Доказательство. Если случайная величина Х задана рядом распределения
то ряд распределения для СХ имеет вид:
Тогда М (СХ) = Сх 1 р 1 + Сх 2 р 2 + … + Схnрn = С (х 1 р 1 + х 2 р 2 + … + хnрn) = СМ (Х).
Две случайные величины называются независимыми, если закон распределения одной из них не зависит от того, какие значения приняла другая. В противном случае случайные величины зависимы.
Назовем произведением независимых случайных величин Х и Y случайную величину XY, возможные значения которой равны произведениям всех возможных значений Х на все возможные значения Y, а соответствующие им вероятности равны произведениям вероятностей сомножителей.
Свойство 3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:
Доказательство. Для упрощения вычислений ограничимся случаем, когда Х и Y принимают только по два возможных значения:
Тогда ряд распределения для XY выглядит так:
Следовательно, M (XY) = x 1 y 1 × p 1 g 1 + x 2 y 1 × p 2 g 1 + x 1 y 2 × p 1 g 2 + x 2 y 2 × p 2 g 2 = y 1 g 1(x 1 p 1 + x 2 p 2) + y 2 g 2(x 1 p 1 + x 2 p 2) = (y 1 g 1 + y 2 g 2) (x 1 p 1 + x 2 p 2) = M (X) × M (Y).
Замечание 1. Аналогично можно доказать это свойство для большего количества возможных значений сомножителей.
Замечание 2. Свойство 3 справедливо для произведения любого числа независимых случайных величин, что доказывается методом математической индукции.
Определим сумму случайных величин Х и Y как случайную величину Х + Y, возможные значения которой равны суммам каждого возможного значения Х с каждым возможным значением Y; вероятности таких сумм равны произведениям вероятностей слагаемых (для зависимых случайных величин — произведениям вероятности одного слагаемого на условную вероятность второго).
Свойство 4. Математическое ожидание суммы двух случайных величин (зависимых или независимых) равно сумме математических ожиданий слагаемых:
Доказательство. Вновь рассмотрим случайные величины, заданные рядами распределения, приведенными при доказательстве свойства 3. Тогда возможными значениями X + Y являются х 1 + у 1, х 1 + у 2, х 2 + у 1, х 2 + у 2. Обозначим их вероятности соответственно как р 11, р 12, р 21 и р 22. Найдем М (Х + Y) = (x 1 + y 1) p 11 + (x 1 + y 2) p 12 + (x 2 + y 1) p 21 + (x 2 + y 2) p 22 = x 1(p 11 + p 12) + x 2(p 21 + p 22) + y 1(p 11 + p 21) + y 2(p 12 + p 22).
Докажем, что р 11 + р 22 = р 1. Действительно, событие, состоящее в том, что X + Y примет значения х 1 + у 1 или х 1 + у 2 и вероятность которого равна р 11 + р 22, совпадает с событием, заключающемся в том, что Х = х 1 (его вероятность — р 1). Аналогично доказывается, что p 21 + p 22 = р 2, p 11 + p 21 = g 1, p 12 + p 22 = g 2. Значит, M (X + Y) = x 1 p 1 + x 2 p 2 + y 1 g 1 + y 2 g 2 = M (X) + M (Y).
Замечание. Из свойства 4 следует, что сумма любого числа случайных величин равна сумме математических ожиданий слагаемых.
Date: 2015-06-05; view: 637; Нарушение авторских прав |