![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Вопрос 1
Что понимается под названием вычислительный эксперимент? Коротко говоря – создание и изучение математических моделей исследуемых объектов с помощью ПЭВМ Уместно ли здесь слово «эксперимент». Безусловно. При математическом моделировании мы имеем дело не с самим явлением, а с некоторым теоретическим «слепком» с него, с моделью, выражающей в математической форме основные закономерности, которым она подчиняется. В результате исследователь, проводя вычислительный эксперимент, испытывает как бы саму природу (конструкцию, технологический процесс, объект вооружения, операцию), задавая ей вопросы и получая строгие и относительно полные ответы. Возможность замены исходного объекта его математической «концепцией» и дальнейшего «диалога» с нею таит в себе большие преимущества и означает серьезное изменение методологии и технологии военно-научных исследований. Становится все более ясной неизбежность широкого использования математического моделирования для реализации государственных комплексных научно-технических программ вообще и программ развития отраслей в частности. Концепция вычислительного эксперимента (его также называют методом статистических испытаний) в настоящее время детально разработана и очерчена сфера его приложения. Он имеет свои особенности в различных областях науки и предназначен для изучения, прогнозирования, оптимизации сложных многопараметрических стохастических нелинейных процессов, теоретическое и экспериментальное исследование которых традиционными методами затруднено или невозможно (например, прогнозирование хода и исхода боевых действий, задачи баллистики, эргономики и т.д.). Метод статистических испытаний – один из основных методов моделирования больших систем. Широкое применение метода объясняется тем, что он позволяет заменить эксперимент с реальной системой экспериментом с моделью этой системы на ПЭВМ. При моделировании методом статистических испытаний не требуется строгого математического описания системы: достаточно знать в общих чертах алгоритм ее функционирования. Этот алгоритм может быть задан описательно и переведен в машинную программу. Во многих практических задачах построение математической модели функционирования системы в целом трудно осуществимо, но можно аналитически описать поведение отдельных элементов и построить моделирующий алгоритм функционирования системы, реализуемый на ПЭВМ. В этих случаях статистическое моделирование оказывается единственно приемлемым средством исследования. Статистическое моделирование представляет собой численный метод исследования модели системы. Строго говоря, ПЭВМ не является принципиально обязательным инструментом метода. Однако огромное количество вычислений, которое при этом требуется выполнить, делает возможным практическое применение метода только с помощью ПЭВМ. Сущность метода состоит в имитации на ПЭВМ случайных процессов, протекающих в реальной системе, с учетом структуры системы, связей и взаимовлияний между ее элементами. Имитация осуществляется реализацией соответствующего моделирующего алгоритма. Вследствие того, что моделируемый процесс является случайным, результаты, полученные при однократном моделировании, не могут характеризовать его. Искомые величины, характеризующие исследуемый процесс, находят статистической обработкой данных, полученных многократным моделированием. Если число испытаний Пусть моделируется процесс, зависящий от случайных параметров Следующим шагом является моделирование случайных параметров системы. Например, параметр Далее производится Таким образом, можно выделить три основные составные части метода статистических испытаний: 1) построение математической модели и моделирующего алгоритма исследуемой системы; 2) формирование случайных величин с заданным законом распределения вероятностей; 3) статистическая оценка результатов моделирования. Нельзя указать общих правил построения модели и моделирующего алгоритма. Однако имеются приемы, позволяющие представить формализованный процесс функционирования системы в виде последовательности операций (или групп операций), выполняемых ПЭВМ. В качестве примера далее будет рассмотрено построение структуры алгоритма, моделирующего работу системы массового обслуживания (СМО). Методы формирования случайных величин с заданным законом распределения излагаются в следующем параграфе. Здесь же рассмотрим вопросы оценки точности метода статистических испытаний и определения необходимого числа испытаний Статистическая обработка и оценка точности результатов моделирования основывается на предельных теоремах теории вероятностей: теореме Чебышева и теореме Бернулли. Согласно теореме Чебышева, при неограниченном увеличении числа независимых испытаний
где
Теорема Бернулли доказывает, что при неограниченном увеличении числа независимых испытаний
Пусть случайная величина Из теоремы Чебышева следует, что ошибка метода может быть оценена лишь вероятностно, с определенной степенью достоверности. Обозначим через
Вероятность
Вероятность Из теории вероятностей известно, что при нормальном законе распределения вероятность отклонения случайной величины
где
Также известно, что если производится большое число Из сказанного следует, что вероятность любого отклонения
Положим
тогда получим
Сравнивая выражения (3) и (7), найдем условие, при котором ошибка метода не превысит величину
Задаваясь доверительной вероятностью
Из формулы (9) видно, что для определения
Величину Задавая доверительную вероятность
с надежностью Мы рассмотрели точность моделирования процесса, в котором при каждом из Так как Введя снова величину
Можно показать, что в этом случае необходимое число испытаний
где Так как до начала испытаний величина Основными достоинствами метода статистических испытаний являются: · применимость для моделирования очень сложных систем и процессов любой физической природы. Система может содержать элементы непрерывного и дискретного действия, быть подверженной воздействию многочисленных случайных факторов, описываться сложными линейными и нелинейными зависимостями и т. д.; · простота осуществимости. Составляется программа для одного испытания, затем испытание повторяется · простота оценки точности полученных результатов. Наиболее существенным недостатком метода, ограничивающим его применение, является большое количество испытаний, которые необходимо провести для получения характеристик исследуемой системы с высокой точностью. Кроме того, методу присущ общий недостаток любых численных методов, связанный с трудностями установления функциональных зависимостей между параметрами системы. Это объясняется тем, что результаты каждого испытания носят частный характер и характеризуют поведение системы лишь для тех значений параметров, при которых проводилось моделирование. Date: 2015-05-23; view: 601; Нарушение авторских прав |