Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Частотный спектр непериодического сигнала





 

Рядом Фурье вида (3.3) или (3.12) могут быть представлены только периодические сигналы. Но строго периодических сигналов не бывает, т.к. сигналы имеют начало и конец, изменяют свою форму в связи с модуляцией, действием помех. Всякий непериодический сигнал (неповторяющийся, однократный) можно рассматривать как периодический, период которого равен , т.е. T0 → ∞.

 

Рисунок 3.4 - Непериодический сигнал

 

При увеличении периода T0 интервалы между частотами гармонических составляющих в спектре сигнала и амплитуды спектральных составляющих уменьшаются и в пределе, при T0 → ∞, становятся бесконечно малыми величинами (3.2). При этом ряд Фурье, представляющий спектральное разложение периодического сигнала, преобразуется в интеграл Фурье, отображающий спектральное разложение непериодического сигнала.

Рассмотрим, как произойдут эти изменения. Для этого в ряд Фурье (3.12) и в выражение (3.13) введем

,

Из выражения (3.2) следует, что 0 = k 2π/ T 0 и превращается в текущее значение частоты при T 0→∞, т.е. 0ω, тогда пределом интеграла F является некоторая функция частоты:

(3.14)

Данная функция имеет смысл спектральной плотности комплексной амплитуды. Комплексные амплитуды при T =∞ становятся бесконечно малыми:

.

В связи с этим в выражении для ряда Фурье сумма может быть заменена интегралом Фурье. В результате получается прямое и обратное преобразование Фурье:

– для вычисления спектральной плотности амплитуды   (3.15)
– для восстановления исходного сигнала по спектру

 

Примеры непериодического сигнала:







Date: 2015-05-22; view: 1436; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию