![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Элементы операционного исчисленияПусть функция f(x) обладает следующими свойствами: 10. f(x) ≡0 при t < 0. 20. |f(x)| < МеSot при t > 0, где М > 0 и S0 – некоторые действительные постоянные. 30. На любом конечном отрезке [а, в] положительной полуоси Ot функция f(x) удовлетворяет условием Дирихле, т.е.: а) ограниченна; б) либо непрерывна, либо имеет лишь конечное число точек разрыва I рода; в) имеет конечное число экстремумов. Такие функции в операционном исчислении называются изображаемыми по Лапласу, или оригиналами. Пусть р = α + βi - комплексный параметр. При сформированных условиях интеграл Этот интеграл называется интегралом Лапласа, а определяемая им функция комплексного аргумента р называется преобразованием Лапласа от функции f(t) или лапласовым изображением f(t) или просто изображением f(t).
Таблица изображений основных элементарных функций
Тот факт, что функция Если дано линейное дифференцированное уравнение n-го порядка с постоянными коэффициентами y(n) + a1y(n-1) +…+ any = f(t),
правая часть которого f(t) является оригиналом, то и решение этого уравнения, удовлетворяющее произвольным начальным условиям вида:
y (0) = y0, у΄(0) = y΄0, y΄΄=y0΄΄, …,y(n-1)(0) = y(n-1)0
(т.е. решение задачи Коши, поставленной для этого уравнения, с начальными условиями при t = 0, служит оригиналом. Обозначая изображение этого решения через Пусть оригинал f(t) дифференцируем n раз и его производные до n-го порядка в свою очередь являются оригиналами. Тогда справедлива теорема дифференцирования оригинала: если f(k)(t) В частности: f΄ f΄΄(t) f΄΄΄(t) Пример 1. Решить дифференциальное уравнение
y΄΄΄-6y΄΄+11y΄-6y=0, если у(0) = 0, у΄(0) = 1, у΄΄(0) = 0. Решение. Переходя к изображениям по теореме дифференцирования оригинала, получим:
Используем элементарные приемы для разложения этой дроби на сумму, таких простейших дробей, оригиналы которых известны:
Полагая р =1, находим –5 = 2 А, откуда А = -5/2. Полагая р =2, находим –4 = - В, откуда В = 4. При р = 3, находим –3 = 2 С, откуда С = -3/2.
Следовательно,
Отсюда, используя формулу (3) таблицы изображений, находим:
Пример 2. Решить систему уравнений: Решение. Перейдем к изображениям:
х΄
Система уравнений примет вид:
Из первого уравнения системы выразим
Выразим из 2-го уравнения
Осталось найти оригинал для
Полагая р =-1 получаем –8 = 4 В, откуда В= -2. Полагая р = 0, получаем 2 = -3 А, откуда А =- Полагая р = 3, получаем 32 = 12 С, откуда С = Следовательно:
Тогда Аналогично поступим с дробью для отыскивания оригинала для
При р = -1, 8 = 4 В, откуда В = 2. При р = 0, -1 = -3 А, откуда А = При р = 3, получаем 32 = 12 С, откуда С = Следовательно: Тогда
Пример 3. Решить дифференциальное уравнение методом операционного исчисления
у΄΄-2у΄-3у = е3t, если у(0) = 0, у΄(0) = 0. Решение Перейдем к изображениям:
y΄΄ y΄ y е3t или, учитывая начальные условия:
квадратный трехчлен р2- 2р – 3 можно разложить на два множителя, так как его корни р1= 3, р2 = -1: р2 – 2р – 3 = (р -3)(р+1). Окончательно имеем:
Полагая р = -1, получаем 1 = 16 С, т.е. При р = 3, имеем 1 = 4 А, т.е. Сравнивая коэффициенты при р2, получим О = В +С, т. е.
откуда, используя таблицу изображений, находим искомый оригинал и решение данного дифференциального уравнения: или
Пример 4. Решить систему уравнений: Решение. Перейдя к изображениям имеем:
Из 1-го уравнения системы выразим
Из 2-го уравнения системы выразим Таким образом:
Таким образом: Разложив, полученные дроби на простейшие, по таблице изображений найдем оригинал:
При р = 5: 12 = 10А, А = 1, 2. При р =5: 6 = 10С, С = 0,6. При р = -5: 2 =-10В, В = -0,2. При р = -5: -4 = -10Д, Д = 0,4.
Следовательно,
Откуда
|