Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Уравнение математической физики
Решение уравнения колебания струны методом характеристик (методом Даламбера) Струной называется тонкая нить, которая может свободно изгибаться. Пусть струна находится под действием сильного начального натяжения Т0. Если вывести струну из положения равновесия и подвергнуть действию какой-нибудь силы, то струна начнет колебаться.
рис. 11
Ограничимся рассмотрением тех колебаний, при которых отклонения точек струны от положения покоя малы, в любой момент времени все точки струны находятся в одной и той же плоскости и каждая точка струны колеблется, оставаясь на одном и том же перпендикуляре к прямой, соответствующем состоянию покоя струны. Принимая эту прямую за ось Ох, обозначим через и = и(х, t) отклонение точек струны от положения равновесия в момент времени t. При каждом фиксированном значении t график функции и = и(х, t) на плоскости хО и дает форму струны в момент времени t. Функция и = и(х, t) удовлетворяет дифференцируемому уравнению
(1)
где а2= Т0 / ς, ƒ= F / ς, ς- масса единицы длины (линейная плотность струны), F – сила, действующая на струну перпендикулярно оси О х и рассчитанная на единицу длины. Если внешняя сила отсутствует, т.е. f = 0, то получится уравнение свободных колебаний струны. (2)
Для полного определения движения струны нужно задать в начальный момент времени t=0 форму и скорость струны, т.е. положение ее точек и их скорость в виде функции абсцисс х этих точек. Пусть (3)
Эти условия (3) называются начальными условиями задачи. Общее решение дифференциального уравнения (2) свободных колебаний имеет вид:
и = Ф1 (х – аt) + Ф2(х + аt)
Подобрав функции Ф1 и Ф2 так, чтобы функция и = и (х, t) удовлетворяла приведенным начальным условием, приходим к решению исходного дифференциального уравнения в виде
(4)
Пример 1. Найти решение и = и (х, t) уравнения методом Даламбера, если в начальный момент времени t= 0 форма струны и скорость точки струны с абсциссой х определяются соответственно функциями Решение Здесь φ(х) = sin x, ψ(x) = 1, отсюда по формуле (4) имеем:
- решение уравнения свободных колебаний струны при заданных начальных условиях.
Date: 2015-04-23; view: 631; Нарушение авторских прав |