Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Политропные процессы
Термин «политропа» представляет собой сочетание двух греческих слов «поли» - много и «тропос» - путь, направление. Поэтому в политропном процессе предполагается многообразие путей изменения параметров состояния системы. Политропным процессом с постоянным показателем называется обратимый термодинамический процесс изменения состояния простого тела, подчиняющийся уравнению, которое может быть представлено в следующих формах:
; (88)
; (89)
= . (90)
где п – показатель политропы, являющий в рассматриваемом процессе постоянной величиной, которая может иметь любые частные значения - положительные и отрицательные (-¥ £ n £ +¥). Физический смысл показателя политропы п определяется после дифференцирования выражения (88)
. (91)
Из соотношения непосредственно следует
. (92)
Это значит, что постоянный показатель политропы определяется соотношением потенциальной и термодинамической работ в элементарном или конечном процессах. Значения этих работ могут быть определены графически в координатах (рис. 6а). В логарифмических координатах политропный процесс (политропа) с постоянным показателем представляет собой прямую линию (рис. 6б)
. (93)
При этом, постоянный показатель политропы определяется как тангенс угла наклона линии процесса к оси абсцисс () (рис. 6 б)
n = = . (94)
а б
Рис. 6. Политропа с постоянным показателем
Из соотношения (92) следует, что для изобарного процесса n = 0,
Следует отметить, что не все термодинамические процессы в координатах logv – logp описываются прямой линией, т.е. подчиняются уравнению политропы с постоянным показателем. Любой термодинамический процесс можно описать уравнением политропы с переменным показателем (рис. 8). Расчет политропного процесса с переменным показателем вызывает необходимость ввести в рассмотрение три показателя процесса: истинный показатель процесса (n); первый средний показатель и второй средний показатель (m).
Истинный показатель процесса (n) определяется как соотношение элементарной потенциальной работы к элементарной термодинамической работе , что соответствует тангенсу угла наклона касательной, проведенной к кривой процесса в точке процесса, к оси абсцисс () в логарифмической сетке координат
n = = tg a. (95)
Для конкретных процессов, характеризующихся неизменным значением какой-либо функции или параметра состояния (z = p,v,T, u, h, s), истинный показатель политропы определяется соотношением
. (96)
Первый средний показатель политропы определяется как отношение конечных (интегральных) значений потенциальной и термодинамической работ в процессе
. (97)
Второй средний показатель политропы численно равен тангенсу угла наклона секущей 1-2 к оси абсцисс () в логарифмической сетке
m = = . (98)
Непосредственно из последнего выражения (98) следует уравнение политропы с переменным показателем
. (99)
При проведении инженерных расчетов в ряде случаев политропные процессы с переменным показателем политропы приближенно описываются уравнением политропы с постоянным показателем (88), значение которого принимается равным первому среднему показателю политропы (). Date: 2015-05-09; view: 3140; Нарушение авторских прав |