![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Капиллярные явления. Формула Лапласса
Если поместить узкую трубку (капилляр) одним концом в жидкость, налитую в широкий сосуд, то вследствие смачивания или несмачивания жидкостью стенок капилляра кривизна поверхности жидкости в капилляре становится значительной. Если жидкость смачивает материал трубки, то внутри ее поверхность жидкости — мениск — имеет вогнутую форму, если не смачивает — выпуклую (рис. 101). Под вогнутой поверхностью жидкости появится отрицательное избыточное давление, определяемое по формуле (68.2). Наличие этого давления приводит к тому, что жидкость в капилляре поднимается, так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет. Если же жидкость не смачивает стенки капилляра, то положительное избыточное давление приведет к опусканию жидкости в капилляре. Явление изменения высоты уровня жидкости в капиллярах называется капиллярностью. Жидкость в капилляре поднимается или опускается на такую высоту h, при которой давление столба жидкости (гидростатическое давление) r gh уравновешивается избыточным давлением Dр, т. е. 2s/R=rgh, где r — плотность жидкости, g — ускорение свободного падения. Если m — радиус капилляра, q — краевой угол, то из рис. 101 следует, что (2scosq)/r= rgh, откуда h=(2scosq)/(rgr). (69.1) В соответствии с тем, что смачивающая жидкость по капилляру поднимается, а несмачивающая — опускается, из фор-мулы (69.1) при q<p/2 (cosq>0) получим положительные значения Л, а при 0>p/2 (cosq<0) —отрицательные. Из выражения (69.1) видно также, что высота поднятия (опускания) жидкости в капилляре обратно пропорциональна его радиусу. В тонких капиллярах жидкость поднимается достаточно высоко. Так, при полном смачивании (6 = 0) вода (r=1000 кг/м3, s=0,073 Н/м) в капилляре диаметром 10 мкм поднимается на высоту h»3 м. Капиллярные явления играют большую роль в природе и технике. Например, влагообмен в почве и в растениях осуществляется за счет поднятия воды по тончайшим капиллярам. На капиллярности основано действие фитилей, впитывание влаги бетоном и т. д.
Следовательно, давление внутри жидкости под вогнутой поверхностью меньше, чем в газе, на величину D р. Формулы (68.1) и (68.2) являются частным случаем формулы Лапласа, определяющей избыточное давление для произвольной поверхности жидкости двоякой кривизны: где R 1 и R 2 — радиусы кривизны двух любых взаимно перпендикулярных нормальных сечений поверхности жидкости в данной точке. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости. Для сферической искривленной поверхности (R 1 =R 2 =R) выражение (68.3) переходит в (68.1), для цилиндрической (R 1 =R и R 2=¥) — избыточное давление Dр=s(1/R+1/¥)=s/ R. Для плоской поверхности (R 1= R 2=¥) силы поверхностного натяжения избыточного давления не создают.
Date: 2015-05-09; view: 984; Нарушение авторских прав |