![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Атом водорода в квантовой механике
Решение задачи об энергетических уравнениях электрона для атома водорода (а также водородоподобных систем: иона гелия Не +, двукратно ионизированного лития Li++ и др.) сводится к задаче о движении электрона в кулоновском поле ядра.
Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом Ze (для атома водорода Z = 1), где r - расстояние между электроном и ядром. Графически функция U (r) изображена жирной кривой на рис. 38, неограниченно убывающей (возрастающей) по модулю при уменьшении r, т.е. при приближении электрона к ядру. Состояние электрона в атоме водорода описывается волновой функцией
где m - масса электрона, Е - полная энергия электрона в атоме. Так как поле, в котором движется электрон, является центрально-симметричным; то для решения уравнения (9.1) обычно используют сферическую систему координат: 1. Энергия. В теории дифференциальных уравнений доказывается, что уравнения типа (9.1) имеют решения; удовлетворяющие требованиям однозначности; конечности и непрерывности волновой функции
т.е. для дискретного набора отрицательных значений энергии. Таким образом; решение уравнения Шредингера для атома водорода приводит к появлению дискретных энергетических уровней. Возможные значения Е1,Е2,Е3 показаны на рис. 38 в виде горизонтальных прямых.
Рис. 38 При Е>О движение электрона является свободным; область непрерывного спектра Е>О (на рис. 37 заштрихована) соответствует ионизированному атому. Энергия ионизации атома водорода равна
Выражение (9.3) совпадает с формулой (7.7), полученной Бором для энергии атома водорода. Однако если Бору пришлось вводить дополнительные гипотезы, то в квантовой механике дискретные значения энергии, являясь следствием самой теории, вытекают непосредственно из решения уравнения Шредингера. 2. Квантовые числа. В квантовой механике доказывается, что уравнению Шредингера (9.1) удовлетворяют собственные функции, Главное квантовое число n, согласно (9.2), определяет энерге-тические уровни электрона в атоме и может принимать любые цело-численные значения начиная с единицы: n=1, 2, 3, Из решения уравнения Шредингера вытекает, что момент импульса (механический орбитальный момент) электрона квантуется, т.е. не может быть произвольным, а принимает дискретные значения, опреде-ляемые формулой
где
т.е. всего n значений, и определяет момент импульса электрона в атоме. Из решения уравнений Шредингера следует также, что вектор
где Хотя энергия электрона (9.2) и зависит только от главного квантового числа n, но каждому собственному значению En (кроме Е1) соответствует несколько собственных функций
Квантовые числа и их значения являются следствием решений уравнений Шредингера и условий однозначности, непрерывности и конечности, налагаемых на волновую функцию В атомной физике по аналогии со спектроскопией состояние электрона, характеризующееся квантовым числом Рис. 39 На рис. 39 для примера приведено распределение электрон-ной плотности (в форме электронного облака) для состояний атома во-дорода при n = 1 и n = 2, определяемое 3. Спектр. Квантовые числа n, Теоретически доказано и экспериментально подтверждено, что для дипольного излучения электрона, движущегося в центрально - симметричном поле ядра, могут осуществляться только такие переходы, для ко- торых: 1) изменение орбитального квантового числа
В оптических спектрах указанные правила отбора в основном выполняются. Однако в принципе могут наблюдаться и слабые, "запрещенные" линии, например возникающие при переходах с
серии Бальмера -
Переход электрона из основного состояния в возбужденное обусловлен увеличением энергии атома и может происходить только при сообщении атому энергии извне. Например, на счет поглощения атомом фотона. Так как поглощающий атом находится обычно в основном состоянии, то спектр атома водорода должен состоять из линий, соответствующих переходам
Date: 2015-05-08; view: 1357; Нарушение авторских прав |