Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Атом водорода в квантовой механике. Решение задачи об энергетических уравнениях электрона для атома водорода (а также водородоподобных систем: иона гелия Не+
Решение задачи об энергетических уравнениях электрона для атома водорода (а также водородоподобных систем: иона гелия Не +, двукратно ионизированного лития Li++ и др.) сводится к задаче о движении электрона в кулоновском поле ядра. Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом Ze (для атома водорода Z = 1), характер закона природы. Уравнение Шредингера имеет вид , (8.9)
где ; m – массачастицы; - оператор Лапласа ;
i -мнимая единица; U (х, у, z, t) - потенциальная функция частицы в силовом поле, в котором она движется: (х, у, z, t) - искомая волновая функция частицы. Уравнение (8.9) справедливо для любой частицы, движущейся с малой скоростью, т.е. со скоростью v<<с, И дополняется условиями, накладываемыми на волновую функцию: 1) конечность, однозначность и непрерывность; 2) производные должны быть непрерывны; 3) функция должна быть интегрируема: (это условие в простейших случаях сводится к условию нормировки вероятностей). Уравнение (8.9) является общим уравнением Шредингера или уравнением, зависящим от времени. Для многих Физических явлений, происходящих в микромире, уравнение (8.9) можно упростить, исключив зависимость от времени. Иными словами, найти уравнение Шредингера для стационарных состояний, т.е. с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т.е. функция U = U (x,y,z) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени. . (8.10) Уравнение (8.10) называется уравнением Шредингера для стационарных состояний. В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают имеющие физический смысл. Для уравнения Шредингера такими являются условия регулярности волновых функций: конечность, однозначность и непрерывность вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями . Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном спектре, во втором - о дискретном спектре. Date: 2015-05-08; view: 567; Нарушение авторских прав |