Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Краткая теория. Внешним фотоэффектом или фотоэлектронной эмиссией называется явление выхода электронов из металла под действием света





Внешним фотоэффектом или фотоэлектронной эмиссией называется явление выхода электронов из металла под действием света.

В фотоэффекте проявляется квантовая теория света. Объяснить закономерности фотоэффекта, используя волновую точку зрения на свет нельзя. Явление внешнего фотоэффекта было открыто в 1888 г. Г. Герцем и впервые изучено российским физиком А.Г. Столетовым в 1889 г.

Для наблюдения внешнего фотоэффекта можно использовать вакуумный фотоэлемент. Такой фотоэлемент, независимо от его типа, состоит из двух электродов, один из которых, катод, выполнен из металла с небольшой работой выхода электронов А, например цезия. При освещении такого металла светом электроны сравнительно легко вырываются с его поверхности. Второй электрод – анод – вводится для того, чтобы принять эти электроны и, благодаря возникшему току, зафиксировать их наличие. Катод и анод помещаются в стеклянный вакуумированный баллон. Источник света – лампа накаливания Л, подключённая к источнику переменного напряжения. Для измерения тока в этом простейшем случае достаточна установка, не содержащая источника питания (рис. 3.1).

При освещении фотоэлемента электроны вылетают из катода и, обладая кинетической энергией, будут удаляться от катода и могут случайно попасть на анод, создав в цепи фотоэлемента ток. Этот ток i 0 будет мал, ибо большинство электронов, выбитых с поверхности катода, движутся произвольно и на анод почти не попадают.

Фототок можно увеличить, если подать на фотоэлемент напряжение, которое заставит выбитые электроны менять случайное направление своего движения и двигаться к аноду. Чем большее напряжение подано на фотоэлемент, тем большее число электронов примет участие в направленном движении, и тем больше будет фототок. Число притянутых электронов, а значит и ток, с увеличением напряжения U на фотоэлементе будут возрастать. График зависимости силы тока от напряжения на фотоэлементе, изображённый на рис. 3.2, называют вольтамперной характеристикой фотоэлемента. Сила тока будет увеличиваться до тех пор, пока в направленном движении не примут участие все выбитые светом электроны. Дальнейшее увеличение напряжения не приведёт более к возрастанию тока – будет достигнут ток насыщения i н. По величине этого тока можно вычислить общее число электронов, выбитых квантами света.

Если сменить знаки на электродах и подать небольшой отрицательный потенциал на анод, то электроны, выбитые светом, уже не будут ускоряться тем электрическим полем, в которое они попадают. Наоборот, поле будет их задерживать, так как анод будет отталкивать фотоэлектроны, испущенные катодом. Ток станет меньше i 0, но не прекратится, поскольку выбитые электроны, благодаря полученной от света кинетической энергии, будут двигаться против поля и некоторые из них смогут достичь анода. Только при определённом значении обратного напряжения, когда кинетическая энергия даже самых быстрых электронов будет вся расходоваться на работу против сил поля, ток в цепи фотоэлемента станет равным нулю: это минимальное значение обратного напряжения, при котором фототок становится равным нулю, называют запирающим (или задерживающим) напряжением U з.Очевидно, что запирающее напряжение пропорционально максимальной кинетической энергии электронов:

. (3.1)

Измерив U з, можно определить максимальные значения кинетической энергии и скорости фотоэлектронов.

Экспериментальные исследования, выполненные в конце XIX века, выявили следующие закономерности внешнего фотоэффекта.

1. При неизменном спектральном составе электромагнитных излучений, падающих на фотокатод, фототок насыщения прямо пропорционален энергетической освещенности катода (иначе: число фотоэлектронов, выбиваемых из катода за 1 с, прямо пропорционально интенсивности излучения).

2. Максимальная начальная скорость фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой (длиной волны).

3. Для каждого фотокатода существует красная граница фотоэффекта, то есть минимальная частота электромагнитного излучения ν0 (максимальная длина волны lкр = с0), при которой фотоэффект ещё возможен.

Обсудим закон сохранения энергии в применении к явлению фотоэффекта. Свет, падая на металл, расходует свою энергию W на два процесса: выбивание электронов с поверхности катода (совершение работы выхода А) и сообщение электронам кинетической энергии

Согласно классическим волновым представлениям, энергия световой волны равна сумме энергий электрического и магнитного полей, комбинацией которых и является световая волна.

Увеличение количества световой энергии, вызванное, например, приближением источника света, должно привести к увеличению скорости выбитых электронов, так как работа выхода А является постоянной для данного катода величиной и определяется свойствами самого металла. Следовательно, максимальная скорость выбитых электронов должна зависеть от интенсивности света, так как интенсивность, по определению, равна средней энергии W, проходящей через единицу площади за единицу времени.

НО! Из второй закономерности фотоэффекта следует, что скорость электронов зависит не от интенсивности, а от частоты света – налицо первое противоречие.

Кроме того, волновые представления о свете приводят к тому, что свет любой частоты, обладая достаточной интенсивностью, должен вызывать фотоэффект. На опыте же наблюдается ситуация, когда свет с частотой меньше некоторой минимальной, вообще не вызывает фотоэффекта, даже при очень большой интенсивности (закономерность 3).

Таким образом, волновые представления о свете не позволяют полностью объяснить закономерности фотоэффекта, теория вступает в противоречие с экспериментом.

Объяснение фотоэффекта оказывается возможным на базе не волновых, а квантовых представлений о свете. Такую замену в 1905 году предложил Альберт Эйнштейн. С точки зрения квантовых представлений энергию света W следует считать энергией потока квантов света – фотонов. Если каждый фотон обладает энергией h n (h – постоянная Планка, n – частота света), то поток фотонов несёт энергию

W = N h n, (3.2)

где N – число фотонов. В этом случае увеличение количества фотонов приводит к увеличению интенсивности света, а увеличение частоты – к увеличению энергии отдельного фотона.

Эйнштейн предположил, что каждый электрон выбивается отдельным фотоном, поэтому в законе сохранения энергии в случае фотоэффекта нужно учитывать не всю энергию света, а лишь энергию одного кванта. Записанный таким образом закон сохранения энергии носит название уравнения Эйнштейна для фотоэффекта:

. (3.3)

Таким образом, согласно квантовой теории излучения, энергия фотона расходуется на выбивание электрона и ещё на сообщение ему кинетической энергии.

Закономерности фотоэффекта, описанные выше, прекрасно объясняются квантовой теорией света. Действительно, раз интенсивность света пропорциональна числу фотонов и для выбивания одного электрона нужен один фотон, то увеличение интенсивности приводит к увеличению количества выбитых электронов и, следовательно, фототока (закономерность 1). Согласно определению силы тока (i = D q/ Dt), наибольшее значение фототока i н должно быть прямо пропорционально числу N всех электронов, выбитых светом из катода за одну секунду:

. (3.4)

Из уравнения Эйнштейна (3.6) видно, что максимальная кинетическая энергия фотоэлектронов прямо пропорциональна частоте света и, соответственно, их скорость также возрастает с увеличением частоты (закономерность 2). Если же частота света будет меньше некоторой минимальной частоты n0, такой что:

h n0 = A, (3.5)

то фотоэффект происходить не будет, так как энергия фотона меньше работы выхода: энергии фотона не хватит на то, чтобы выбить электрон (закономерность 3).

Date: 2015-05-08; view: 683; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию