![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Ван-дер-ваальсовский газ
В п.1.8 отмечалось, что поведение реальных газов хорошо описывается уравнением pVM =RT. (1.67)
В соответствии с уравнением (1.67) произведение pV при неизменной температуре должно оставаться постоянным. В действительности, как видно из таблицы, при давлениях порядка 200 атм наблюдаются заметные отклонения, которые, непрерывно возрастая с увеличением давления, достигают при 1000 атм более 100%. Эти отклонения не представляются удивительными, поскольку при увеличении плотности начинают играть все большую роль объем молекул и взаимодействие между ними. Для описания поведения газов в широком интервале плотностей было предложено много различных уравнений. Самым простым из них и вместе с тем дающим достаточно хорошие результаты оказалось уравнение Ван-дер-Ваальса. Это уравнение получено путем внесения поправок в уравнение (1.67) и имеет следующий вид:
где p — давление, оказываемое на газ извне (равное давлению газа на стенки сосуда), а и b — константы Ван-дер-Ваальса, имеющие для разных газов различные значения, определяемые опытным путем. Если давление выражено в паскалях, а объем— в кубических метрах на моль, то константа а измеряется в Па×м6/моль2, а константа b — в м3/моль. Иногда константу а выражают в атм·л2/моль2 , а константу b — в л/моль. Из-за взаимного притяжения между молекулами газ как бы сжимается большим давлением, чем давление p, оказываемое на газ стенками сосуда, в котором он заключен. Поправка Уравнение (1.68) написано для одного моля газа. Чтобы перейти к уравнению для произвольной массы т, нужно учесть, что Заменив в (1.68) V м через V/ n, получим
Умножив это уравнение на v, и, введя обозначения а'= n 2a, b'= n b, (1.69) приходим к уравнению Ван-дер-Ваальса для v молей
Буквами В соответствии с тем фактом, что все реальные газы с уменьшением плотности приближаются по своим свойствам к идеальному газу, уравнение Ван-дер-Ваальса в пределе, при стремлении объема к бесконечности, переходит в уравнение (1.67). В этом можно убедиться, вынеся в уравнении (1.70) р и V за скобки и приняв во внимание, что произведение pV остается примерно постоянным. Реальные газы следуют уравнению Ван-дер-Ваальса лишь приближенно. Воображаемый газ, точно подчиняющийся уравнению (1.68), называется Ван-дер-ваальсовским. Внутренняя энергия Ван-дер-ваальсовского газа должна включать в себя, кроме кинетической энергии молекул, энергию взаимодействия между молекулами. Для нахождения внутренней энергии Ван-дер-ваальсовского газа воспользуемся тем обстоятельством, что работа, совершаемая при расширении газа, против сил взаимного притяжения молекул друг к другу, равна приращению энергии взаимодействия: d'A=dEp. Силы взаимного притяжения между молекулами учтены в уравнении (1.68) с помощью добавки к давлению, равной a/V2 М Соответственно работа против сил взаимодействия между молекулами может быть представлена в виде
Интегрирование этого выражения дает, что
Внутренняя энергия ван-дер-ваальсовского газа зависит как от объема, так и от температуры. Следовательно, выражение для U м имеет вид:
(мы включили const выражения (1.69) в f(T)). Это выражение в пределе при стремлении объема к бесконечности должно переходить в выражение (1.28) для внутренней энергии идеального газа. Следовательно, f(T)=СVT. Итак, внутренняя энергия моля ван-дер-ваальсовского газа определяется формулой
Внутренняя энергия
(мы учли, что v2a=a' и vV м =V). По формулам (1.72) и (1.73) можно находить приближенные значения внутренней энергии реальных газов.
Date: 2015-05-05; view: 966; Нарушение авторских прав |