Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Рассмотрим систему линейных алгебраических уравнений
Назовем матрицу расширенной матрицей системы, которая получается добавлением к матрице А столбца свободных членов . Найдем и , где А – основная матрица системы. Если: 1) , где n – число неизвестных в системе, то система имеет одно решение; 2) , система имеет бесконечное множество решений; 3) система не имеет решений. В тех случаях, когда система имеет одно или множество решений, по «треугольному» виду расширенной матрицы восстанавливаем систему и решаем ее снизу вверх. Пример Исследовать совместность систем: а) ; б) Решить совместную систему. Решение а) Запишем расширенную матрицу системы и с помощью цепочки элементарных преобразований приведем ее к «треугольному» виду. ~ (умножим первую строку на 4 и сложим со
в «треугольном» виде. Найдем ранги основной и расширенной матрицы. В «треугольном» виде расширенной матрицы две ненулевых строки, следовательно, rangB = 2. «Треугольный» вид основной матрицы получаем из «треугольного» вида расширенной матрицы отбрасыванием последнего столбца, стоящего за чертой , здесь также две ненулевые строки – rangA = 2. Так как rangA = rangB = 2 < 3, система имеет бесконечное множество решений. Найдем их, для чего восстановим систему по «треуголь-ному» виду расширенной матрицы. из последне- . б) Запишем расширенную матрицу системы и с помощью цепочки элементарных преобразований приведем ее к «треугольному» виду. ~ (умножим первую строку на 7 и сложим со второй, затем на 2 и сложим с третьей) ~ ~ (поменяем местами вторую и третью строки) ~ ~ (умножим вторую строку на (–3) и сложим с третьей) ~ . Найдем ранги основной и расширенной матрицы. В «треугольном» виде расширенной матрицы три ненулевых строки, следовательно, rangВ = 3. «Треугольный» вид основной матрицы получаем из «треугольного» вида расширенной матрицы отбрасыванием последнего столбца, стоящего за чертой, , здесь две ненулевые строки – rangA = 2. Так как rangA ≠ rangВ, система не имеет решений. Ответ: а) б) система не имеет решений.
Date: 2015-04-23; view: 576; Нарушение авторских прав |