Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






S 3p 3d





Характер застройки энергетических подуровней определяет принад­лежность элемента к тому или иному электронному семейству:

s -элементы - застройка внешнего s -подуровня, например:

Калий К 1s22s22p63s23p64s1

р -элементы - застройка внешнего р -подуровня, например:

Фосфор Р 1s22s22p63s23p3

d -элементы - застройка предвнешнего d -подуровня, например:

Ванадий V 1s22s22p63s23p63d34s2

f -элементы - застройка третьего снаружи f -подуровня, например:

Церий Се 1s22s22p63s23p63d104s24p64d104f25s25p65d06s2

Естественной классификацией элементов по электронным конфи­гурациям их атомов является периодическая система элементов Менделеева. Причина периодичности свойств элементов заключается в периодической повторяемости сходных электронных конфигура­ций.

В периодах (горизонтальных строках таблицы) свойства элементов изменяются в связи с закономерным изменением электронных структур их атомов.

В группах (вертикальных строках таблицы) свойства элементов сходны благодаря аналогии в электронном строении внешнего ва­лентного уровня.

Номер периода определяет номер внешнего энергетического уровня в электронных формулах элементов. Количество элементов в каждом периоде соответствует минимальной ёмкости застраиваю­щихся энергетических подуровней.

Номер группы отвечает числу валентных электронов в атоме элемента. Кроме первого, каждый период начинается с двух s -эле­ментов и заканчивается шестью р -элементами. В больших периодах между этими семействами располагаются десять d- элементов (4....6 периоды). В 6 периоде к ним добавляется четырнадцать f- элемен­тов, 7 период не завершён.

Указанные закономерности позволяют составить электронную формулу элемента. Например, элемент тантал находится в 6 пе­риоде, V группе, побочной подгруппе. Это говорит о том, что в атоме этого элемента шесть энергетических уровней, пять валент­ных электронов. Перед танталом в 6 периоде стоят два s -элемента и два d -элемента. Сам тантал - третий по счёту d -элемент. Следо­вательно, его валентные электроны имеют конфигурацию 5d36s2. Предыдущие энергетические уровни застроены полностью. Полная электронная формула этого элемента имеет вид:

Та 1s22s22p63s23p63d104s24p64d104f145s25p65d36s2.

В периодической зависимости от зарядов ядер атомов находится валентность (степень окисления), атомные и ионные радиусы, энер­гия ионизации, энергия сродства к электрону, электроотрицатель­ность и другие свойства.

В простейшей трактовке валентности как степени окисления ато­мов её отождествляют с числом электронов, отдаваемых или при­обретаемых атомами в процессе взаимодействия.

Высшую степень окисления атом приобретает, отдав все свои ва­лентные электроны, поэтому её величина соответствует номеру группы, в которой находится данный элемент. Так, высшая степень окисления азота - +5 (V группа элементов), серы - +6 (VI группа элементов).

Низшая степень окисления определяется тем условным зарядом, который приобретает атом при присоединении электронов, необхо­димых ему для приобретения устойчивой восьмиэлектронной обо­лочки (октета электронов). Отсюда низшую степень окисления можно рассчитать по разности между 8 и номером группы. Напри­мер, для азота низшая степень окисления равна -3, для серы -2. Следует учесть, что металлы не проявляют отрицательных степеней окисления, для них минимальным значением этой величины явля­ется 0.

Значение высшей и низшей степеней окисления атомов элементов позволяет составлять формулы их соединений: высших оксидов, гидроксидов, солей, водородных соединений. При составлении фор­мул следует учитывать требование электронейтральности. Степени окисления кислорода, как правило, -2, водорода - +1.

Общая формула оксидов - соединений элемента с кислородом - Э+mxО-2y, водородных соединений - Э-mН+1m, гидроксидов - ос­нований Э+m(ОН)m. Простейшие формулы кислородсодержащих кислот выражаются общими формулами: НЭ+7О4, Н2Э+6О4,

Н3Э+5О4 НЭ+5О3, Н4Э+4О4 Н2Э+4О3

орто мета орто мета

Энергия ионизации, энергия сродства к электрону, электроотрица­тельность являются мерами проявления элементами металлических и неметаллических свойств. Металлические (восстановительные) свой­ства определяются способностью атомов элементов к отдаче элек­тронов, неметаллические (окислительные) - тенденцией к при­соеди­нению электронов.

Металлические свойства наиболее характерны для элементов, в атомах которых на внешнем энергетическом уровне находится не­большое количество электронов: от одного до трёх. Неметалличе­ские свойства, в первую очередь, проявляют элементы, в атомах которых на внешнем уровне от четырёх до семи электронов.


В периоде периодической системы металлические свойства эле­ментов убывают с ростом порядкового номера; неметаллические свойства, напротив, возрастают в том же направлении. Это связано с закономерным ростом числа валентных электронов.

В группе металлические свойства возрастают с ростом порядко­вого номера, а неметаллические убывают, что связано с увеличе­нием радиуса атома с ростом порядкового номера элемента, удалён­ностью внешних электронов от ядра и ослаблением сил притяжения между электронами и ядром.

Большинство элементов периодической системы проявляют как металлические, так и неметаллические свойства. Вклад тех или дру­гих определяется спецификой электронной структуры атома. Коли­чественно этот вклад можно охарактеризовать с помощью величины электроотрицательности атома, представляющей собой полусумму энергии ионизации и энергии сродства к электрону. Электроотрица­тельность возрастает в периоде с ростом порядкового номера и убывает в группе с ростом порядкового номера.

Свойства соединений элементов можно рассматривать с двух то­чек зрения: как кислотно-основные и окислительно-восстановитель­ные. Типичные металлы образуют оксиды и гидроксиды основного характера, типичные неметаллы - кислотные оксиды и кислоты. Кислотно-основной характер остальных элементов, в первую оче­редь, это относится к d -элементам, зависит от степени окисления их атомов: с ростом степени окисления основной характер соедине­ний сменяется амфотерным и далее переходит в кислотный. На­пример, хром в степени окисления +2 образует оксид CrO и гид­роксид Cr(OH)2, проявляющие основные свойства. Соединения хрома +3 - Cr2O3, Cr(OH)3 -амфотерны, а оксид и гидроксид хрома в степени окисления +6 носят кислотный характер (CrO3, Н2СrO4 и H2Cr2O7).







Date: 2015-05-04; view: 639; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию