Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Приведенная теплота как функция состояния
Первый закон термодинамики гласит, что количество теплоты, полученное любой термодинамической системой, идет на приращение ее внутренней энергии и совершение работы против внешних сил. Математическое выражение этого закона (см. выражение (13-4)) использует понятия полного дифференциала и функции состояния. Поскольку величина работы зависит от способа перевода системы из одного состояния в другое, то бесконечно малое приращение работы не является дифференциалом. Поэтому и приращение теплоты тоже не является дифференциалом некоторой первообразной. Однако при выводе уравнения адиабаты можно было заметить, что после деления правой части (13-4) на абсолютную температуру, она представлялась как сумма двух дифференциалов (выражение (13-14)). Отсюда следует, что если обе части (13-4) разделить на абсолютную температуру, то величина также становится дифференциалом некоторой функции. Эта функция получила название приведенной теплоты или энтропии S, т.е. dS = . Для моля идеального газа dS = CV d(lnT) + Rd(lnV), и S = S0 + CVlnT + RlnV, (15-4) где S0 - постоянная интегрирования. Другими словами, можно сказать, что энтропия обладает свойством аддитивности: энтропия двух молей газа в два раза больше энтропии одного моля. Поэтому, так же как и для потенциальной энергии, «нулевой» уровень энтропии мо-
V Рис.60. Небратимый цикл. | жет выбираться произвольным образом; абсолютная же величина энтропии несущественна, важно знать лишь величину ее изменения. Рассмотрим произвольный цикл, состоящий из двух процессов (см. рис.60), один из которых необратим. Для такого цикла неравенство Клаузиуса имеет вид |
< 0. (15-6)
Но процесс 2-1 является обратимым процессом, значит для него приведенное количество теплоты равно изменению энтропии DS, поэтому неравенство (15-6) можно переписать по-другому:
< 0,
или S2 - S1 > . (15-7)
Если процесс 1-2 происходит изолированно, то D Q1;2 = 0, и
S2 - S1 = D S > 0. (15-8)
Отсюда следует важный вывод о том, что в изолированной системе энтропия может только возрастать (или оставаться постоянной, если процесс 1-2 обратим).
В качестве примера рассмотрим процесс смешивания двух одинаковых объемов газа, находящихся при одинаковых давлениях и одной и той же температуре.
p;T;V; m р;Т;V; m
Рис.61. Схема смешивания двух объемов газа. | Пусть имеются два одинаковых объема, соединен- ных закрывающимся краном (см.рис.61). В каждом из них находится масса газа m при давлении р и температуре Т. Когда открывается кран, начинается взаимодиффузия обеих частей газа. Обозначим изме-нение энтропии первой массы газа через D 1, тогда: |
D 1 = , (15-9)
т.к. температура не изменяется; аналогично, для другой массы m
D 2 = R , (15-10)
где m - молярная масса газа. Общее изменение энтропии D 0 = D 1+D 2 равно
D 0 = 2m > 0. (15-11)
На первый взгляд результат кажется странным, т.к. произошло простое объединение двух масс газа, и их энтропия должна равняться сумме энтропий каждой из частей. Однако в действительности произошло изменение состояния газа, хотя его температура, давление, суммарная масса и суммарный объем остались неизменными. Для выяснения, что же изменилось в системе, необходимо проследить за «судьбой» каждой молекулы. Предположим, что мы сумели каждую молекулу в правом объеме пометить красной краской, а в левом - синей. В действительности, конечно, это невозможно: если за одну секунду удастся отмечать сто молекул, то за сутки будет помечено всего 107 молекул. За год число помеченных молекул составит примерно 4 10 9 . Нетрудно подсчитать, что при такой «скорости» маркирования на одну грамм- молекулу придется затратить 1014 лет, что значительно превышает предполагаемый возраст нашей Галактики. Чтобы разрешить этот парадокс, Максвелл предположил существование некого мистического всемогущего существа, которое он условно назвал демоном. Такой «демон Максвелла» может выполнить любую задачу, связанную с маркированием молекул, а также с их сортировкой при необходимости. Пусть этому демону удалось выполнить нашу задачу, и все молекулы в левом и правом объемах оказались помеченными. Если кран, соединяющий оба сосуда, остается открытым достаточно долго, то число «синих» и «красных» молекул в каждом из объемов окажется примерно одинаковым. Про-изойдет перемешивание молекул, которые в первоначальном состоянии были рассортированы по объемам, - в одном только «красные», в другом - только «синие». Если сначала в системе наблюдался некий порядок, то после открывания крана он исчез. Поэтому возрастание энтропии связано со степенью порядка, точнее, наоборот, со степенью беспорядка в системе.
Однако при «неокрашенных» молекулах никакого изменения порядка не должно наблюдаться, т.к. молекулы неразличимы, и замена одних молекул другими не изменяет состояния системы. В этом случае суммарная энтропия находится простым сложением энтропий каждого из объемов, т.е. выполняется правило аддитивности энтропии.
В статистике, которая оперирует случайными величинами, любое хаотическое, т.е. случайно происходящее событие характеризуется вероятностью. Можно показать (см. мелкий шрифт в конце лекции), что энтропия пропорциональна вероятности пребывания системы в определенном состоянии. Наиболее вероятным состоянием системы, состоящей из большого числа частиц, будет состояние, когда все частицы равномерно распределены по всему объему системы, т.е. они распределены совершенно хаотически. Поэтому возрастание энтропии означает, что любая система стремится в состояние с наибольшей вероятностью. Другими словами, наиболее вероятным состоянием системы является состояние полного хаоса.
Если применить этот термодинамический вывод к нашей Вселенной, то можно придти к заключению, что не смотря на ее огромные размеры, в ней тоже поздно или рано, но обязательно произойдет выравнивание концентрации материи; температура всех частей Вселенной также выровняется и наступит естественная «тепловая смерть» Вселенной.
В действительности такой вывод является несостоятельным по ряду причин. Так, например, до сих пор никто не доказал, что Вселенную можно рассматривать как замкнутую систему (вывод о возрастании энтропии получен в предположении о замкнутости рассматриваемой системы ). Кроме того, из рассмотрения других функций состояния системы с большим количеством частиц следует, что возможны локальные отклонения в распределении плотности (у нас нет возможности провести такой вывод) материи, которые получили название флуктуаций. Флуктуации могут существовать достаточно долго, причем их среднее число не меняется с течением времени.
Date: 2015-05-04; view: 1064; Нарушение авторских прав