![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Определение 1. Совокупность Аn всех n – мерных векторов называется n – мерным векторным пространством (арифметическим или числовым)
ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ. Векторные (линейные) пространства. 1. Арифметическое n - мерное векторное (линейное) Пространство An. Пусть дано произвольное натуральное число n. Будем называть любой набор из n действительных чисел, данных в определенном порядке: (x1, x2, …, xn), n -мерным вектором Определение 1. Совокупность Аn всех n – мерных векторов называется n – мерным векторным пространством (арифметическим или числовым). Эта математическая модель может описывать количественно различные вещи. При n = 1, 2, 3 – координаты точек прямой, плоскости или реального пространства. Если возраст, рост, вес ребенка – 7 лет, 1,1 м, 35 кг соответственно, то эти характеристики могут быть представлены как вектор (точка) (7; 1,1; 35) в 3 – мерном пространстве. Более распространены конструкции однородных данных. Предположим возраст четверых детей – 7, 5, 6 и 5 лет. Эти данные могут быть представлены как точка (вектор) Определим в этом пространстве некоторые операции. Суммой двух векторов
Произведением вектора l Нулевым вектором называется вектор Вектором, противоположным вектору Векторы Определенные таким образом линейные операции над векторами обладают всеми алгебраическими свойствами, присущими числам, (коммутативность и ассоциативность сложения, свойства дистрибутивности умножения на число и т.д.). В частности, верны формулы: 1× Пример 1. Если
Date: 2015-12-10; view: 344; Нарушение авторских прав |