Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Линейное векторное пространство. Базис. Размерность
Рассмотрим непустое множество V элементов – «векторов», зададим на нём две линейные операции – сложение векторов и умножение вектора на действительное число, тогда, если эти линейные операции обладают ниже перечисленными свойствами, то это непустое множество V называется линейным векторным пространством. Выпишем эти свойства: 1º. 3º. 5º. a 7º. a1·(a2 Линейной комбинацией системы векторов Рассмотрим линейную комбинацию, являющуюся нуль вектором: a1 Заметим, что равенство (*) имеет место всегда для нулевых коэффициентов (ai – все нули), но может возникнуть та ситуация, когда оно выполняется и для ненулевой системы коэффициентов, тогда в этом случае говорят, что данная система векторов – линейно зависима, в противном случае – линейно независима (т.е. когда равенство выполняется только для нулевой системы коэффициентов). Остановимся на примерах: 1°. 2°. 3°. 4°. 5°. Неколлинеарные векторы образуют линейно независимую систему векторов (методом от противного было бы получено, что они коллинеарны). 6°. Некомпланарная тройка векторов образует линейно независимую систему (по аналогии – метод от противного привел бы нас к тому, что они компланарны). Из определения линейно зависимой системы векторов можно получить признак (критерий) линейной зависимости: система векторов линейно зависима тогда и только тогда, когда один из векторов этой системы является линейной комбинацией остальных. Базисом векторного пространства называется упорядоченная система линейно независимых векторов, через которую можно разложить любой вектор пространства, причем, коэффициенты разложения вектора Размерностью векторного пространства называется число векторов базиса. Так, если рассмотреть базис Формулы перехода от одного базиса к другому Рассмотрим задачу перехода от одного базиса к другому, а именно: найдем связь координат произвольного вектора
Вектор
Матрица Т перехода от одного базиса к другому имеет вид: Т = Аналогичные формулы можно получить и для n-мерного пространства. Date: 2015-12-10; view: 425; Нарушение авторских прав |