![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Основные теоремы о пределах
Приведем основные теоремы, на которых основано вычисление пределов: 1. 2. 3. 4. 5. 6.
! Все правила имеют смысл, если пределы функций
Техника вычисления пределов При вычислении предела элементарной функции f(x) приходится сталкиваться с двумя существенно различными типами примеров. · Функция f(x) определена в предельной точке x = a. Тогда · Функция f(x) в предельной точке x = a не определена или же вычисляется предел функции при x→∞. Тогда вычисление предела требует в каждом случае индивидуального подхода. Необходимо помнить, что Более сложными случаями нахождения предела являются такие, когда функция f(x) в точке x = a или при x→∞ представляет собой неопределенность (типа При вычислении пределов при а) чтобы раскрыть неопределенность типа б) чтобы раскрыть неопределенность типа в) чтобы раскрыть неопределенность типа г) чтобы раскрыть неопределенность типа иррациональности, достаточно перевести иррациональность из числителя в знаменатель или из знаменателя в числитель и сократить на множитель, приводящий к неопределенности; д) чтобы раскрыть неопределенность типа Рассмотрим некоторые примеры.
Вычислить пределы функций: Пример 1:
Пример 2: Пример 3: = Пример 4:
Пример5:
Вопросы для самопроверки: 1. Что называется функцией? 2. Что такое область определения и область значений функции 3. Перечислите способы задания функций, их достоинства. 4. Перечислите основные свойства функций. 5. Дайте определение предела функции в точке. 6. Какая функция называется непрерывной в точке? 7. Сформулируйте основные свойства пределов. 8. Как раскрывается неопределенность вида
Дифференциальное исчисление
Понятие производной Определение: Производной функции
Если этот предел конечный, то функция y=f(x) называется дифференцируемой в точке x. Если же этотпредел есть ∞, то говорят, что функция y=f(x) имеет в точке x бесконечную производную.
Механический смысл производной: скорость есть первая производная пути по времени, т.е. Геометрический смысл производной: тангенс угла наклона касательной к графику функции Уравнение касательнойк графику функции Уравнение нормали к графику функции
Таблица производных
Процесс нахождения производных называется дифференцированием функции.
Рассмотрим примеры. Найти производные функций: Пример 1: Решение:
Пример2: Решение: Пример 3: Решение: Date: 2015-10-19; view: 588; Нарушение авторских прав |