Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Оценка точности уравнения регрессии
Как уже отмечалось, оценки параметров уравнения регрессии вычисляются по выборочным данным и лишь приближённо равны этим параметрам. В связи с этим появляется необходимость оценить точность как уравнения регрессии в целом, так и его параметров в отдельности. При решении первой задачи используют процедуру дисперсионного анализа, основанную на разложении общей суммы квадратов отклонений зависимой переменной: на две составляющие, источниками которых являются отклонения за счёт регрессионной зависимости (SSR) и за счёт случайных ошибок (SSE), причём Из теории статистики известно, что SST = SSR + SSE или Аналогичное разложение имеет место и для числа степеней свободы соответствующих сумм: dfT = dfR + dfE, где dfT = n – 1 – общее число степеней свободы; dfR = m – число степеней свободы, соответствующее регрессии (m – число независимых переменных в уравнении регрессии); dfE = n – m – 1 – число степеней свободы, соответствующее ошибкам. Разделив соответствующие суммы квадратов на степени свободы, получим средние квадраты или дисперсии, которые сравниваются по критерию Фишера для проверки гипотезы о равенстве нулю одновременно всех коэффициентов регрессии против альтернативной: не все коэффициенты регрессии равны нулю. Если нулевая гипотеза отклоняется, то это означает, что уравнение регрессии значимо, в противном случае оно ничего не отражает и не может быть использовано в анализе. Итак, процедура дисперсионного анализа регрессии состоит в следующем: рассчитываются суммы квадратов SSR и SSE; определяются средние квадраты или дисперсии, соответствующие регрессии и ошибкам: MSR = SSR / m и MSE = SSE / n – m – 1; сравниваются полученные дисперсии на основе критерия Фишера, причём MSR ³ MSE, следовательно если F /2,m,n-m-1 > F, то уравнение регрессии значимо (не все коэффициенты уравнения регрессии равны нулю), в противном случае – не значимо. Дисперсионный анализ регрессии удобно проводить в таблице вида: Таблица 9.1 – Таблица дисперсионного анализа регрессии
Вернёмся к MSE. Это тоже характеристика точности уравнения регрессии. Этот показатель особого самостоятельного значения не имеет, но участвует в вычислении других показателях точности. Например, корень квадратный из MSE называется стандартной ошибкой оценки по регрессии (Sy,x) и показывает, какую ошибку в среднем получим, если значение зависимой переменной оценивать по уравнению регрессии: Кроме того, этот показатель в неявном виде участвует в определении коэффициента множественной детерминации (R2): или после преобразований: Отсюда следует, что коэффициент множественной детерминации отражает долю вариации изучаемого (результирующего) показателя, обусловленную вариацией за счёт регрессионной зависимости. Коэффициент множественной детерминации иногда выражают в процентах, поэтому, например, если R2 = 75%, то это означает, что изменение зависимой переменной на 75% объясняется изменением включённых в уравнение регрессии независимых переменных, а остальные 25% – это изменения за счёт неучтённых факторов и случайных отклонений (ошибок). Корень квадратный из коэффициента множественной детерминации называется коэффициентом множественной корреляции: который показывает тесноту линейной корреляционной связи между зависимой переменной и всеми независимыми переменными. Ясно что, R2 и R изменяются от нуля до единицы и равны единице, если SSE = 0, т.е. связь линейная функциональная и равны нулю, если SST = SSE, т.е. связь отсутствует. Значимость коэффициента множественной детерминации определяется на основе критерия Фишера: с m числом степеней свободы числителя и n – m – 1 – знаменателя. В социально-экономических исследованиях встречается преобразованная формула определения R2, имеющая вид: или в других обозначениях: , где Sy,x2 – выборочная остаточная дисперсия независимого показателя; Sy2 – его общая выборочная дисперсия. Как уже отмечалось, – стандартная ошибка оценки по регрессии. Из определения коэффициента множественной детерминации следует, что он будет увеличиваться при добавлении в уравнение регрессии независимых переменных, как бы слабо ни были они связаны с независимой переменной. Следуя этой логике, для увеличения точности отражения изучаемой зависимости в уравнение регрессии может быть включено неоправдано много независимых переменных. Точность модели при этом увеличится незначимо, а размерность модели возрастёт так, что её анализ будет затруднён. Кроме того, качество оценок при этом ухудшается. Для исключения такого недостатка рассматривают исправленный (на число степеней свободы) коэффициент множественной детерминации: Этот коэффициент позволяет избежать переоценки независимой переменной при включении её в уравнение регрессии. Если добавление переменной приводит к увеличению , то включение её в уравнение регрессии оправдано, в противном случае – нет. Исправленный коэффициент детерминации всегда меньше неисправленного и является несмещённой оценкой для коэффициента множественной детерминации, в то время как неисправленный – завышенный, смещённой оценкой. Продолжим анализ точности уравнения регрессии. Как уже отмечалось, при проверке значимости уравнения регрессии проверяется гипотеза о том, что все коэффициенты уравнения регрессии равны нулю, против альтернативной – не все коэффициенты регрессии равны нулю. В последнем случае, т.е. если нулевая гипотеза отклонена, встаёт вопрос: какие из коэффициентов равны нулю, а какие значимо отличны от нуля?
Date: 2015-10-18; view: 2363; Нарушение авторских прав |