Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Задание 6. Решить симплексным методом следующие задачи линейного программирования:





Решить симплексным методом следующие задачи линейного программирования:

Задание 7

Решить транспортную задачу. Имеются четыре пункта поставки однородного груза , , , , в каждом из которых находится груз соответственно в количестве , , , тонн и пять пунктов потребления этого груза , , , , . В пункты , , , , требуется доставить соответственно , , , , тонн груза. Транспортные расходы при перевозке единицы груза из пункта в пункт равны , где i= 1, 2, 3, 4, j= 1, 2, 3, 4, 5. Найти такой план закрепления потребителей за поставщиками, чтобы затраты по перевозкам были минимальными, учитывая: ,

,

.

 

Вариант 6

Задание 1

Вероятности выполнить норму для каждого из трех спортсменов соответственно равны 0,7; 0,8 и 0,9. Найти вероятность того, что ее выполнит хотя бы один из них.

Задание 2

Две перфораторщицы набили по одинаковому комплекту перфокарт. Вероятности того, что каждая из них допустит ошибку, соответственно равны 0,05; 0,1. При сверке перфокарт была обнаружена ошибка. Найти вероятность того, что ошиблась первая перфораторщица.

Задание 3

Дано статистическое распределение выборки: в первой строке указаны выборочные варианты , а во второй строке – соответственные частоты количественного признака . Требуется найти:

1) выборочную среднюю;

2) выборочное среднее квадратическое отклонение;

3) моду и медиану.

             
             

Задание 4

Решить методом Жордана–Гаусса систему линейных уравнений:

Задание 5

Решить графически задачу линейного программирования:

Задание 6

Решить симплексным методом следующие задачи линейного программирования:

Задание 7

Решить транспортную задачу. Имеются четыре пункта поставки однородного груза , , , , в каждом из которых находится груз соответственно в количестве , , , тонн и пять пунктов потребления этого груза , , , , . В пункты , , , , требуется доставить соответственно , , , , тонн груза. Транспортные расходы при перевозке единицы груза из пункта в пункт равны , где i= 1, 2, 3, 4, j= 1, 2, 3, 4, 5. Найти такой план закрепления потребителей за поставщиками, чтобы затраты по перевозкам были минимальными, учитывая: ,

,

.

 

Вариант 7

Задание 1

Вероятности попадания в цель для каждого из трех орудий соответственно равны 0,9; 0,8 и 0,6. Найти вероятность того, что попадут в цель только два орудия.

Задание 2

В телевизионном ателье имеется 4 кинескопа. Вероятность того, что кинескоп выдержит гарантийный срок службы, соответственно равна 0,8, 0,85, 0,9, 0,95. Найти вероятность того, что наудачу взятый кинескоп выдержит гарантийный срок службы.

Задание 3

Дано статистическое распределение выборки: в первой строке указаны выборочные варианты , а во второй строке – соответственные частоты количественного признака . Требуется найти:

1) выборочную среднюю;

2) выборочное среднее квадратическое отклонение;

3) моду и медиану.

10,2 10,9 11,6 12,3   13,7 14,4
             

Задание 4

Решить методом Жордана–Гаусса систему линейных уравнений:

Задание 5

Решить графически задачу линейного программирования:

Задание 6

Решить симплексным методом следующие задачи линейного программирования:

Задание 7

Решить транспортную задачу. Имеются четыре пункта поставки однородного груза , , , , в каждом из которых находится груз соответственно в количестве , , , тонн и пять пунктов потребления этого груза , , , , . В пункты , , , , требуется доставить соответственно , , , , тонн груза. Транспортные расходы при перевозке единицы груза из пункта в пункт равны , где i= 1, 2, 3, 4, j= 1, 2, 3, 4, 5. Найти такой план закрепления потребителей за поставщиками, чтобы затраты по перевозкам были минимальными, учитывая: ,

,

.

 

 

Вариант 8

Задание 1

Батарея из трех орудий производит залп по цели. Вероятности попадания в цель для каждого из них соответственно равны 0,7; 0,8 и 0,6. Найти вероятность того, что попадут в цель все три орудия.

Задание 2

В мастерскую поступают телевизоры – 75 % от общего количества, стиральные машины –15 % и микроволновые печи – 10 %. Вероятности того, что отремонтированный бытовой прибор прослужит в течение гарантийного срока, соответственно равны 0,9, 0,7 и 0,85. Найти вероятность того, что наудачу выбранный прибор сломается в гарантийное время.


Задание 3

Дано статистическое распределение выборки: в первой строке указаны выборочные варианты , а во второй строке – соответственные частоты количественного признака . Требуется найти:

1) выборочную среднюю;

2) выборочное среднее квадратическое отклонение;

3) моду и медиану.

 

11,5   12,5   13,5   14,5
             

Задание 4

Решить методом Жордана–Гаусса систему линейных уравнений:

Задание 5

Решить графически задачу линейного программирования:

Задание 6

Решить симплексным методом следующие задачи линейного программирования:







Date: 2015-10-18; view: 413; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.017 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию