Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Задание 7. Решить транспортную задачу
Решить транспортную задачу. Имеются четыре пункта поставки однородного груза , , , , в каждом из которых находится груз соответственно в количестве , , , тонн и пять пунктов потребления этого груза , , , , . В пункты , , , , требуется доставить соответственно , , , , тонн груза. Транспортные расходы при перевозке единицы груза из пункта в пункт равны , где i= 1, 2, 3, 4, j= 1, 2, 3, 4, 5. Найти такой план закрепления потребителей за поставщиками, чтобы затраты по перевозкам были минимальными, учитывая: , , . Вариант 4 Задание 1 Батарея из трех орудий производит залп по цели. Вероятности попадания в цель для каждого из них соответственно равны 0,7; 0,8 и 0,6. Найти вероятность того, что попадут в цель все три орудия. Задание 2 Трое рабочих изготавливают однотипные изделия. Первый изготовил 40 изделий, 15 – второй и 25 – третий. Вероятности брака у каждого рабочего соответственно равны 0,05, 0,01, 0,02. Найти вероятность того, что наудачу взятая бракованная деталь изготовлена третьим рабочим. Задание 3 Дано статистическое распределение выборки: в первой строке указаны выборочные варианты , а во второй строке – соответственные частоты количественного признака . Требуется найти: 1) выборочную среднюю; 2) выборочное среднее квадратическое отклонение; 3) моду и медиану.
Задание 4 Решить методом Жордана–Гаусса систему линейных уравнений:
Задание 5 Решить графически задачу линейного программирования: Задание 6 Решить симплексным методом следующие задачи линейного программирования: Задание 7 Решить транспортную задачу. Имеются четыре пункта поставки однородного груза , , , , в каждом из которых находится груз соответственно в количестве , , , тонн и пять пунктов потребления этого груза , , , , . В пункты , , , , требуется доставить соответственно , , , , тонн груза. Транспортные расходы при перевозке единицы груза из пункта в пункт равны , где i= 1, 2, 3, 4, j= 1, 2, 3, 4, 5. Найти такой план закрепления потребителей за поставщиками, чтобы затраты по перевозкам были минимальными, учитывая: , , .
Вариант5 Задание 1 Вероятности землетрясения в каждом из трех городов соответственно равны 0,1; 0,8 и 0,6. Найти вероятность того, что землетрясение произойдет только в одном городе. Задание 2 В группе спортсменов 20 лыжников, 6 велосипедистов и 4 бегуна. Вероятности выполнить квалификационную норму соответственно равны 0,9, 0,8, 0,75. Найти вероятность того, что выбранный наудачу спортсмен выполнит норму. Задание 3 Дано статистическое распределение выборки: в первой строке указаны выборочные варианты , а во второй строке – соответственные частоты количественного признака . Требуется найти: 1) выборочную среднюю; 2) выборочное среднее квадратическое отклонение; 3) моду и медиану.
Задание 4 Решить методом Жордана–Гаусса систему линейных уравнений: Задание 5 Решить графически задачу линейного программирования: Date: 2015-10-18; view: 609; Нарушение авторских прав |