Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Ранжирование объектов





Рассмотрим случай, когда эксперты ранжируют объекты строго, т.е. указывают номер места, которое занимает данный объект по важности. Обозначим:

число объектов;

число экспертов;

ранг, присвоенный м экспертом у объекту.

Результаты сводят в таблицу:

.

Затем находят суммы рангов по столбцам: где .

Объекты ранжируют в соответствии с суммами рангов: объект предпочтительнее объекта , если ; объекты и эквивалентны, если .

Далее необходимо оценить согласованность экспертов.

Пусть все эксперты совершенно согласованы, т.е. дают одинаковые ранги объектам. В этом случае суммы рангов по столбцам будут: , т.е. в одном столбце все единицы, в другом только двойки и т.д.

Сумма чисел в одной строке: .

Общая сумма рангов во всей матрице: .

Если эксперты полностью рассогласованы, то ранги равны:

. (8.1)

Разброс мнений экспертов будем характеризовать следующим образом. Найдем отклонение суммы рангов в таблице от : . Так как разности будут разного знака, то суммируют квадраты разностей

. (8.2)

Если эксперты полностью согласованы, то сумма максимальна. Если эксперты полностью рассогласованы, то . Обозначим наибольшее значение , соответствующее случаю полной согласованности экспертов.

Для оценки согласованности экспертов вводится коэффициент конкордации (согласованности):

. (8.3)

Если , то полное отсутствие согласованности. Если , то полная согласованность.

Найдем

первый член суммы –

второй –

и т.д.

.....................................................

.

После суммирования получим: . Окончательно получаем:

. (8.4)

Если эксперты неквалифицированны и друг от друга не зависят, то тогда можно рассматривать как случайную величину , для которой известно распределение.

Можно найти вероятность того, что значение коэффициента конкордации получено случайно, т.е. вероятность

.

Значение можно рассматривать, как доверительную вероятность. Если она достаточно мала, а достаточно велико, то предположение об отсутствии согласованности отклоняется. Обычно согласованность считают удовлетворительной, если и и хорошей, если и .

Для малых значений и составлены специальные таблицы распределения , например, таблица значений коэффициента конкордации, для которых вероятность ошибки при принятии гипотезы о согласованности мнений экспертов не превосходит 0,05.

 

\          
  - - 0,71 0,66 0,65
  - 0,625 0,55 0,51 0,505
  - 0,504 0,448 0,416 0,411
  - 0,422 0,378 0,351 0,347
  0,375 0,319 0,288 0,267 0,264
  0,3 0,256 0,231 0,215 0,213

При можно считать, что величина имеет распределение близкое к распределению с степенями свободы.

Пример 8.1.Пять экспертов ранжировали восемь объектов . Результаты приведены в таблице.
Объект →                
Эксперт ↓
                 
                 
                 
                 
                 
               
               

Находим ранг объектов при полном рассогласовании экспертов (8.1):

.

Сумма отклонений (8.2): Коэффициент конкордации (8.4): . .

Число степеней свободы .

По таблицам находим .

Вероятность слишком велика. Для сближения оценок экспертов нужно провести дополнительный тур оценивания, либо исключить второго эксперта, как слишком “оригинального”.

После исключения второго эксперта получаем новую таблицу :

Объект →                
Эксперт ↓
                 
                 
                 
                 
               
               

Производим все вычисления в таком же порядке:


;

;

;

Число степеней свободы .

По таблицам находим . Согласованность экспертов значительно лучше.

 







Date: 2015-09-24; view: 567; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.009 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию