Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Вопрос 11. Теория соответственных состояний. Коэффициент сжимаемости
В инженерных расчетах часто пользуются уравнением состояния идеального газа с введением в него поправочного коэффициента (z), называемого коэффициентом сжимаемости . Коэффициент сжимаемости (z)учитывает различие между идеальным и реальными газами (для идеального газа z = 1). Коэффициент сжимаемости является функцией давления, температуры и зависит от природы газа. Для обобщения данных по коэффициентам сжимаемости различных газов был использован принцип «соответственных» состояний, сформулированный Ван-дер-Ваальсом. Принцип «соответственных» состояний утверждает, что критическое состояние действительно является одинаковым для всех веществ. В критической точке для всех веществ r = 0, , , . Вещества находятся в соответственных состояниях при одинаковом удалении от критической точки. Степень удаления от критической точки определяется с помощью приведенных параметров: приведенного давления ; приведенной температуры ; приведенного объема . Уравнение состояния, записанное в виде F () = 0, называется приведенным уравнением состояния. Оно не содержит индивидуальных констант вещества. Состояния вещества, в которых они имеют одинаковые и называются соответственными. Зная параметры и по данным рис. 1.4 определяется коэффициент сжимаемости z.
12. Математическое выражение 1го начала термодинамики (+баланс рабочего тела). Первое начало термодинамики – это количественное выражение закона сохранения и превращения энергии. Закон сохранения и превращения энергии является универсальным законом природы и применим ко всем явлениям. Он гласит: «запас энергии изолированной системы остается неизменным при любых происходящих в системе процессах; энергия не уничтожается и не создается, а только переходит из одного вида в другой». Это утверждение и принимается в качестве постулата первого начала термодинамики Первое начало термодинамики как математическое выражение закона сохранения и превращения энергии: Внутренняя энергия изолированной системы сохраняет своё постоянное значение при всех изменениях, протекающих внутри системы, то есть . Изменение внутренней энергии неизолированной системы складывается из подведённой (отведённой) теплоты и подведённой (отведённой) работы, то есть . в интегральной форме: - эффективная работа; - внешний теплообмен Полученные уравнения учитывают только внешние эффекты и справедливы только для обратимых процессов. Уравнения являются математическим выражением первого начала термодинамики по внешнему балансу теплоты и работы и гласят: количество теплоты, подведенное извне, идет на изменение внутренней энергии системы и совершение работы.
В термодинамике приняты следущие знаки при определении работы и теплоты в уравнениях первого начала термодинамики: если работа выполняется телом, то она положительная; если работа подводится к телу, то она отрицательная. Если теплота сообщается телу, она имеет положительное значение; если теплота отводится от тела, она имеет отрицательное значение. = + Первого начала термодинамики по внешнему балансу. Работа необратимых потерь , связанная с затратами энергии на преодоление сил трения, удары и завихрения, превращается в теплоту внутреннего теплообмена () = .Полное количество теплоты , полученное телом, равно сумме теплоты, подведенной извне , и теплоты внутреннего теплообмена . ; . Уравнения (1.55) и (1.56) называются уравнениями первого начала термодинамики по балансу рабочего тела, и справедливы для реальных процессов. Первое начало термодинамики по балансу рабочего тела: , где - полный или приведённый теплообмен. Полное количество теплоты , полученное телом, равно сумме теплоты, подведенной извне , и теплоты внутреннего теплообмена Первое начало термодинамики по балансу рабочего тела справедливо для любых процессов протекающих в системе. В условиях обратимого процесса, то есть , первое начало термодинамики по балансу рабочего тела переходит в первое начало термодинамики по внешнему балансу. Для использования этого уравнения нужно уметь его интегрировать. При интегрировании получится: для необратимых процессов и для обратимых процессов.
Date: 2015-09-18; view: 1147; Нарушение авторских прав |